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ABSTRACT

Anisotropy is a useful attribute for the detection and characterization of aligned fracture sets in

petroleum reservoirs. Unfortunately, many of the traditional effective medium theories for modeling

the seismic properties of fractured rock are insensitive to the size of the constituent fractures.

For example, the same pattern of anisotropy may be produced by a high concentration of small,

stiff cracks; or by a lower concentration of large, compliant fractures. The distinction between

these models is important for assessing permeability anisotropy, as fluid flow is dominated by

the largest fractures. One method to gain further insight is through the analysis of frequency

dependent shear wave splitting in microseismic data, as fracture compliance is frequency dependent,

and microseismic data are relatively rich in frequency content. Here we compare two potential

mechanisms causing frequency dependent compliance of fractures: (1) squirt flow in fractured

porous rock, and (2) wave scattering over rough fractures. Both models show a sensitivity to
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average fracture size or compliance of the constituent fractures, and thus provide a potential means

to differentiate between anisotropy produced by small cracks or large fractures. We use both

mechanisms to model frequency dependent anisotropy data obtained from a fractured gas reservoir,

and invert for fracture parameters. Under certain conditions the squirt-flow mechanism can cause

significant frequency dependence in the microseismic band. However, the model is highly sensitive to

the empirically derived mineral-scale relaxation time which is poorly known and requires laboratory

measurements to constrain. Conversely, producing a similar frequency response using the scattering

model requires implausible fracture parameters, therefore the squirt-flow model appears to be the

most likely mechanism for microseismic applications. At higher frequencies, however, scattering

may become more significant. Care should be taken when upscaling ultrasonic laboratory results

for field-scale problems, as different mechanisms may be at play within different frequency bands.
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INTRODUCTION

Large fractures within petroleum reservoirs often significantly enhance permeability and conse-

quently increase production. While seismic studies lack the resolution required to directly image

individual fractures, the presence of aligned fracture sets may produce seismic anisotropy which can

be used as a means to characterize the reservoir (e.g. Lynn and Thomsen, 1990; Hall and Kendall,

2003). In addition to fractures there are several other mechanisms which may contribute to the

anisotropy of sedimentary rocks, and therefore must be considered. For example, there could be

anisotropy related to the rock fabric, such as the preferred alignment of intrinsically anisotropic

minerals (e.g. Vernik and Nur, 1992; Valcke et al., 2006; Kendall et al., 2007), or the periodic

layering of contrasting lithologies (e.g. Backus, 1962); additionally there may be a stress sensitive

contribution to the anisotropy resulting from the alignment of grain-scale microcracks (e.g. Zatsepin

and Crampin, 1997; Hall et al., 2008; Verdon et al., 2008). The problem of distinguishing between

the different sources of anisotropy can be helped by making some simplifying assumptions about

their respective symmetry and orientation. For instance, the fabric of sedimentary rocks is typically

aligned horizontally, which produces an anisotropy system with a vertical axis of symmetry (vertical

transverse isotropy, VTI); whereas cracks and fracture sets are often vertical or steeply dipping,

producing horizontal transverse isotropy (HTI). The combined effect produces a bulk anisotropy

with orthorhombic symmetry (e.g. Tsvankin, 1997; Grechka et al., 1999), which can be interpreted

in terms of the relative contribution of the fabric and fractures (e.g. Verdon et al., 2009; Wuestefeld

et al., 2011).

Distinguishing between anisotropy produced by cracks, which we define as grain-scale features,

and larger fractures with lengths on the order of centimeters to meters, is much more difficult
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to unravel. The effect of a fracture/crack set on the overall elasticity can be considered as a

perturbation to the compliance tensor. The compliance tensor is used rather than the stiffness

tensor because it assumes continuity of stress, but strain may be discontinuous. This is appropriate

for modeling fractured rock, as fractures represent discontinuities in displacement. The overall

strain due to an stress will be the sum of the strains in the rock matrix and fractures. This is

calculated by simply adding the excess compliance tensor of the fractures, Sf , to the compliance

tensor of the background rock. Sf has the form (Schoenberg and Sayers, 1995):

Sf =



ZN 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 ZT 0

0 0 0 0 0 ZT



(1)

where ZN and ZT are the excess normal and tangential compliances of the crack/fracture set, re-

spectively (see Table for a list of symbols used in the paper). However, excess compliance can come

in the form of a few large compliant fractures, or by a higher concentration of smaller stiff fractures

or microcracks (Figure 1). Most of the classic attempts to model fracture-induced anisotropy (e.g.

Hudson, 1981; Thomsen, 1995) are insensitive to fracture size, but the distinction between these

end-members can have significant implications for production, as fluid flow is generally dominated

by the largest fractures.

[Figure 1 about here.]

It has been shown through laboratory experiments that the effective dynamic compliance of
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grain-scale microcracks (e.g. Dvorkin et al., 1995) and sample-scale fractures (e.g. Pyrak-Nolte

and Nolte, 1992; Biwa et al., 2007) are frequency dependent. While these experiments are typically

done at ultrasonic frequencies, recent reportings of frequency dependent anisotropy within fractured

petroleum reservoirs (e.g. Liu et al., 2003; Maultzsch et al., 2003; Al-Harrasi et al., 2011b) suggest

the effect may be observed at seismic exploration frequencies as well. The two most likely models to

explain frequency dependent fracture compliance are: (1) a squirt-flow mechanism, involving wave-

induced fluid flow in fractured porous rocks (e.g. Chapman, 2003) and (2) a scattering mechanism,

involving waves crossing rough fractures with inhomogeneous compliance distributions (e.g. Pyrak-

Nolte and Nolte, 1992). While their underlying mechanisms differ, both models are sensitive to

properties of the individual component fractures (such as average size or compliance) and thus

provide a potential means to distinguish between the end-members in Figure 1. However, if we

wish to use frequency dependent anisotropy to invert for these properties, we need to understand

the relative importance of each mechanism within the frequency band of interest.

Many techniques are available to estimate seismic anisotropy using conventional seismics; for

example, through the detection of azimuthal variations in normal moveout velocities (Tsvankin and

Thomsen, 1994; Alkhalifah, 1997; van der Baan and Kendall, 2002) and reflection amplitudes (Lynn

and Thomsen, 1990; Hall and Kendall, 2003; Sayers and den Boer, 2011), or through shear wave

splitting of P-S converted waves (Ata and Michelena, 1995; Gaiser et al., 2002). However, many of

these techniques occur over a relatively narrow frequency bands (∼10–50 Hz), making the detection

of frequency dependent effects difficult. An alternative approach is to estimate shear-wave splitting

from microseismic events, which are comparatively rich in frequency content (∼10–500 Hz). Micro-

seismic monitoring offers an additional advantage that instruments are often deployed in downhole

arrays such that the ray paths (and therefor the measured anisotropy) are entirely contained within
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the region of interest.

Shear-wave splitting provides an unambiguous indication of anisotropy. As a shear-wave passes

through an anisotropic medium it will split into two orthogonally polarized waves traveling at

different velocities. The polarization of the fast wave (φ) and the delay between wave arrivals (δt)

can be used to characterize the anisotropy along the ray path. The delay time is often normalized

by the path length to express anisotropy as a percentage difference in velocity between the fast and

slow waves (δVS ). To estimate frequency dependent anisotropy, the waveform is first filtered into

different frequency bands and then splitting parameters estimated for each band. Al-Harrasi et al.

(2011a,b), employed this technique to assess frequency dependent anisotropy using a microseismic

dataset from a fractured limestone gas field in Oman. They found clear and strong evidence of

frequency dependence with anisotropy decreasing with increasing frequencies. Al-Harrasi et al.

(2011b) were able to model the data using the squirt-flow theory of Chapman (2003), however,

in doing so they neglect other mechanisms, such as scattering, that may be contributing to the

frequency dependence.

Here we review the main potential contributors to frequency dependent anisotropy related

to fractures, namely the squirt-flow model and the scattering model, to better understand their

relative importance within the microseismic frequency band. For the squirt-flow mechanism we use

the model of Chapman (2003), and for the scattering mechanism we generalize the model proposed

by Pyrak-Nolte and Nolte (1992) and extend it for use with field scale fractures.

[Table 1 about here.]
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MECHANISM 1: SQUIRT-FLOW IN FRACTURED POROUS ROCK

It has long been recognized that although velocities of saturated rocks can be accurately predicted by

Biot-Gassman theory at low frequencies, they typically underestimate velocities at high frequencies.

This discrepancy can be explained with the concept of squirt-flow, which considers local pressure

gradients arising from heterogeneity in the pore space (e.g. O’Connell and Budiansky, 1977; Dvorkin

et al., 1995). Different elements of the pore space will respond differently to seismic waves. While

a pore that is approximately spherical in shape will be quite stiff and resistant to compression,

a low aspect ratio microcrack will be very compliant. Because of this excess compliance a rock

whose porosity is made up of randomly oriented microcracks will have lower seismic velocities than

one with more spherical or equant pores. This additional compliance, however, is also dependent

on saturating fluids. While a drained crack is very compliant, one that is isolated and filled with

a relatively incompressible fluid will be very stiff. The concept of squirt-flow arises when the

pore space is composed of both spherical pores and microcracks. As a wave passes the cracks will

compress more than the pores, producing a local pressure gradient and causing the fluid to “squirt”

out of the cracks. This allows cracks to effectively drain, and remain compliant, despite being fluid

saturated. However, the transfer of fluids does not occur instantaneously, a small amount of time

is required for the pressures to fully equalize, which produces a frequency dependent effect when

exposed to an oscillatory stress field like a seismic wave. The cracks will only remain compliant

if there is sufficient time within a single wave period for the cracks to fully drain and refill. At

high frequencies the fluid is effectively trapped in the cracks which then appear stiff, increasing the

overall seismic velocities.

Between the low and high frequency end-members, there is a transition zone where pressure
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equalization is only partially achieved. This is the range where maximum velocity dispersion and

attenuation occurs. The central frequency of this transition zone for an unfractured rock is often

referred to as the mineral scale “squirt-flow frequency,” ωm, with the associated relaxation time,

τm = ω−1
m . τm is empirically derived but is found to be proportional to the viscosity of the

saturating fluid, and inversely proportional to the permeability of the host rock (Chapman et al.,

2003a). Laboratory measurements on reservoir rocks typically find that the transition frequency

lies within the ultrasonic band, much higher than frequencies typically encountered in the field

(Thomsen, 1995). As such, the low frequency end-member is often assumed for field studies.

Most traditional squirt-flow models only consider heterogeneity of the grain scale porosity, which

is appropriate for the laboratory samples where tests are carried out. However, field scale problems

often include much larger fractures, which are not addressed in many of the theories. The multi-

scale squirt-flow model of Chapman (2003) extends the models to include larger-scale fractures in

addition to grain-scale microcracks and pores. For simplicity it is assumed that the microcracks and

fractures share a common shape and aspect ratio, and that there is fluid communication between

the fractures and the porosity, but not between fractures directly. This results in an additional

relaxation time parameter associated with the fluid response of the fractures, τf ,

τf =
af
ζ
τm, (2)

where af is the average fracture radius, and ζ is the average grain size. This larger relaxation time is

a consequence of the fractures having a greater ratio of volume to surface area than the microcracks,

thus requiring a longer time to drain. This introduces the potential of pushing frequency dependent

compliance down into the seismic frequency range. In the case of aligned fractures this should result

in observable frequency dependent anisotropy.
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The squirt-flow model of Chapman (2003) does not explicitly calculate the fracture compliances,

rather it solves for the full anisotropic stiffness tensor directly. However, we can calculate the

effective fracture compliances by subtracting the isotropic background compliance from the full

anisotropic compliance tensor using the method of Schoenberg and Sayers (1995) (see appendix A

for further details). Figure 2 shows predicted normal and tangential compliances as a function

of frequency for several different fracture sizes. The model assumes the properties of the N-A

carbonate gas reservoir of Al-Harrasi et al. (2011b), with background velocities of VP = 2800 m/s,

VS = 1470 m/s, and a density of ρ = 2400 kg/m3. Porosity is taken to be 0.1, with an assumed

mineral scale relaxation time of τm = 9.5 × 10−7 s. Tangential compliance shows no frequency

dependence, as a tangential displacement across a fracture does not produce a volume change, so

additional fluid flow is not induced. Normal compliance, however, is strongly frequency dependent.

At low frequencies the fracture will drain when compressed, and appear very compliant, while at

high frequencies the fluid will be trapped resulting in a stiffer fracture. As expected the band of

frequency dependence is sensitive to the fracture size.

[Figure 2 about here.]

MECHANISM 2: SCATTERING ON ROUGH FRACTURES

A second potential mechanism to explain frequency dependent compliance is wave scattering. Here,

rather than represent fractures as low-aspect ratio ellipsoidal inclusions as was done in the squirt-

flow model, we use displacement discontinuity theory (Schoenberg, 1980; Pyrak-Nolte et al., 1990).

This treats fractures as planar interfaces between two half-spaces with imperfect contact. Traction

across the surface is continuous, while displacement is discontinuous and proportional to the fracture
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compliances. For a planar interface with normal in the x1 direction the displacement discontinuity

is

∆u =


BN 0 0

0 BT 0

0 0 BT

 t, (3)

where BN and BT are the normal and tangential fracture compliances respectively, and t is the

traction. Unlike ZN and ZT which describe the equivalent medium compliance of a full fracture

set and have dimension 1/stress, BN and BT are the compliances of the individual fracture, with

dimension length/stress. The two different types of compliance can be related through the equation

ZN,T =
BN,T
H

, (4)

where H is the effective fracture spacing. Thus fracture-sets with different individual fracture com-

pliances can have the same equivalent medium compliance provided their spacing is appropriately

scaled.

Displacement discontinuity theory can be used to predict transmission coefficients for waves

crossing a fracture with uniform compliance. For a wave propagating normal to a fracture the

transmission coefficient is (Schoenberg, 1980)

T (BN,T , ω) =

(
1−

iωρVP,SBN,T
2

)−1

, (5)

where ω is the angular frequency, ρ is the density of the matrix rock, VP,S is the velocity of the

wave in question (VP or VS) and BN,T is the compliance of the fracture. BN should be used for

P-wave transmission and BT for S-waves. In general the fracture acts as a low-pass filter, with

characteristic cut-off frequency

ωc =
2

ρVP,SBN,T
. (6)
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It follows that fractures with different compliances will have different cut-off frequencies. In lab-

oratory studies the dynamic fracture compliance can be estimated by matching experimentally

determined transmission coefficients against theoretical values predicted by the displacement dis-

continuity model. Equation 5 can easily be inverted for compliance to give

BN,T =
2
√

1− |T |2
ωρVP,S |T |

. (7)

Local variations in compliance

One of the underlying assumptions of equation 5 is that the compliance of the fracture is homoge-

neous over the area sampled by the passing wave. In reality this is likely untrue, as fracture surfaces

are made up of a complex arrangement of asperities in contact separated by void spaces of various

shapes and sizes, and are therefore strongly heterogeneous. Pyrak-Nolte and Nolte (1992) argued

that such a fracture could be modeled as a planar contact with a heterogeneous distribution of

local compliances and that such an arrangement should produce an apparent frequency dependent

compliance.

The apparent frequency dependence arises due to spatial averaging of transmission coefficients

over the fracture. Since different portions of the fracture have different local compliances, they

will also have different characteristic cut-off frequencies (ωc in equation 6). For a given frequency,

only portions of the fracture with ωc higher than that of the propagating wave will transmit the

signal, while portions with lower ωc will tend to reflect or backscatter the signal (Figure 3). At very

low frequencies (ω → 0) all portions of the fracture would be expected to transmit the wave. As

frequency increases the more compliant portions will begin to scatter the signal (since ωc ∝ 1/BN,T ,

equation 6), and the transmitted wave will only sample the stiffer portions leading to an apparent
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decrease in compliance.

[Figure 3 about here.]

To determine the apparent dynamic compliance of a real fracture we must first calculate the

average transmission coefficient over the fracture surface S which can be expressed as

T (Bapp(ω), ω) =
1

|S|

∫
S
T (Bloc, ω) dS, (8)

where Bloc is the spatially varying local compliance, and the function T (Bloc, ω) is given by equa-

tion 5. The use of equation 8 requires knowledge of the spatial variation of local compliance on the

fracture surface. Alternatively the above integral can be expressed as

T (Bapp(ω), ω) =

∫ ∞
0

T (Bloc, ω)f(Bloc) dBloc, (9)

where f(Bloc) is a probability distribution function describing local compliance (Biwa et al., 2007).

This averaged transmission coefficient can then be substituted into equation 7 to give an apparent

frequency dependent fracture compliance

BNapp,Tapp(ω) =
2
√

1− |T (ω)|2
ωρVP,S |T (ω)|

. (10)

Pyrak-Nolte and Nolte (1992) and Biwa et al. (2007) were able to use this model to explain

frequency dependent compliance for stiff fractures in laboratory settings at ultrasonic frequencies.

It remains unresolved whether similar frequency dependence may be expected for larger, reservoir-

scale fractures at exploration seismic frequencies.

Fracture model

Hudson et al. (1997) derived expressions to estimate the compliance of fractures modeled as in-
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terfaces between two surfaces that are not in perfect contact but are characterized as a planar

distribution of welded regions. The model assumes that wavelengths are long compared to the

length scale of the welded regions, and that the relative area of welded contact between the surface

is small. For a drained fracture the ratio of normal to tangential compliance was found to be (Liu

et al., 2000):

BN
BT

=
1− ν

1− ν/2
. (11)

where ν is the Poisson’s ratio of the rock matrix. Additionally, it was found that for a fixed

proportion of contact area the magnitudes of the fracture compliances (both BN and BT ) are

proportional to the average size of the contact points. A fracture with many small and closely

spaced asperities in contact will be much stiffer than a fracture with more widely spaced larger

contact zones. Worthington and Lubbe (2007) compiled a list of published estimates of fracture

compliance from various scales, and noted that compliance tended to increase with increasing

fracture size (Figure 4). They argued that because of the fractal nature of surface roughness (e.g.

Brown and Scholz, 1985), the average size of the contact zones across a rough fracture may act as

a proxy for fracture size, thus explaining the apparent increase in compliance.

[Figure 4 about here.]

Unfortunately equations of Hudson et al. (1997) are insufficient to model frequency dependent

compliance as they provide only single value estimates of compliance for the whole fracture. Since

the derivation of the equations assumed a long wavelength, the results may be thought of as the

low frequency limit of equation 10. That is; as ω → 0, |T | → 1, and equation 10 reduces to a simple

spatial average of the local compliances with equal weighting. We denote these low frequency

average compliances BN0, and BT0 (with their associated effective media compliance counterparts
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ZN0 and ZT0). In order to model frequency dependence, the model must be modified to allow for

variations in compliance within the fracture. This can be achieved by imposing an appropriate

probability distribution function for local compliances.

Here we make the assumption that local compliance is log-normally distributed over a fracture.

This is based on the recognition that aperture distributions of natural rough walled fractures are

often found to be approximately log-normal (e.g. Gale, 1987; Nolte and Pyrak-Nolte, 1991; Keller,

1998). Strictly-speaking, compliance expressions derived by Hudson et al. (1997) are not explicitly

dependent on the fracture aperture, but on the size and distribution of the welded regions. However,

compliance is also dependent on the rate of formation of new contact area due to an increase in

normal stress (Pyrak-Nolte and Morris, 2000), which is directly dependent on the local aperture

distribution.

That is, the fracture aperture, h, will have a probability distribution function in the form:

f(h) =
1

Sh
√

2π
exp

{
−(ln(h)−M)2

2S2

}
(12)

where M and S are the location and scale parameters, respectively, of the log-normal distribu-

tion. This can be related to the mean aperture, 〈h〉, and its standard deviation, σh, through the

expressions:

S2 = ln

[
1 +

(
σh
〈h〉

)2
]
, (13)

M = ln〈h〉 − 1

2
S2. (14)

Figure 5 shows examples of log-normal distributions of fracture aperture. Each distribution is

normalized to have a mean value of 1, but with different relative roughness, σh
〈h〉 , which controls

the “skewness” of the distribution. For low values of roughness the distribution is approximately
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normal, which is applicable for relatively smooth fractures. As roughness increases the distribution

becomes progressively skewed towards low apertures, but with a long tail. For simplicity we assume,

due to the fractal nature of fracture roughness, that the standard deviation of aperture will scale

with the mean aperture such that the relative roughness σh
〈h〉 remains constant.

[Figure 5 about here.]

Once a probability distribution function of stiffness (or compliance) is estimated, then an average

transmission coefficient for a given frequency can be calculated using equation 9, which can then

be substituted into equation 10 to calculate the apparent compliance of the fracture. In practice

the average transmission coefficient from equation 9 is estimated using a Monte Carlo simulation,

where the integral is replaced by the summation

T (Z(ω), ω) =
1

N

N∑
`=1

T (B`, ω), (15)

where N is an arbitrary large number. B` is a fracture compliance randomly sampled from the

probability distribution function of local compliances f(Bloc), and T (B`, ω) is calculated using

equation 5.

[Figure 6 about here.]

Figure 6 shows predicted frequency dependent compliances due to scattering for various values

of mean compliance (6a) and relative roughness (6b) for a model with background velocities of

VP = 2800 m/s, VS = 1470 m/s, and a density of ρ = 2400 kg/m3. The frequency band over

which the frequency dependence is observed is strongly controlled by the mean compliance of the

fractures. Much like in the squirt-flow model, a fracture set produced by larger, more compliant

15



fractures will show frequency dependence at lower frequencies than stiff fractures. Increasing the

relative roughness has the effect of broadening the frequency band affected and increasing the

magnitude of the change in compliance. Unlike the squirt-flow model, here both the normal and

tangential compliances show frequency dependence. Although the overall compliance decreases,

the normal to tangential compliance ratio shows very little variation.

PREDICTED SHEAR-WAVE SPLITTING

Since the magnitude of shear-wave splitting produced by a fracture set is proportional to its total

excess compliance, frequency dependent compliance will produce frequency dependent shear-wave

splitting. To model shear wave splitting we first must estimate an effective medium stiffness tensor

incorporating both the background rock properties and the aligned fracture set. For the squirt-flow

model this is calculated directly (see appendix A and Chapman, 2003, for more detail), however

for the scattering model this must be constructed. First the fracture compliances (BN , and BT )

for a given frequency are estimated using the methodology described in the fracture model sec-

tion, then effective media fracture compliances (ZN , and ZT ) for a given fracture spacing, H, are

calculated using equation 4. These are used to produce the fracture set excess compliance tensor

Sf (equation 1), which is added to the background rock compliance, Sb, following the method of

Schoenberg and Sayers (1995). This is then inverted to produce an effective stiffness tensor, Ceff :

Ceff = (Sb + Sf )−1. (16)

Once the stiffness tensor is constructed the phase velocities; VP , VS1 and VS2, for a given propagation

direction are computed by solving the Christoffel equation. Shear wave splitting is then calculated
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using:

δVS = 100
VS1 − VS2

(VS1 + VS2)/2
. (17)

The magnitude of the frequency dependence will depend on the wave propagation direction relative

to the fracture-set orientation.

We choose parameters for both models that will produce frequency dependence within the

microseismic frequency band (∼10–500 Hz). For the squirt-flow model we use a fracture size of

1 m, a fracture density of 0.025 and a relaxation time of τm = 9.5×10−7 s. For the scattering model

we use a mean fracture compliance of BT0 = 10−10 m/Pa, a roughness parameter of σh
〈h〉 = 1.0,

and an average fracture spacing of H = 10 m (producing a mean effective medium compliance of

ZT0 = 10−11Pa−1). Figure 7 shows the predicted frequency dependent shear wave splitting from

each model for a range of different wave propagation directions relative to the fracture orientation.

For waves propagating normal to the fractures (azimuth = 0◦) both models predict no splitting.

Both models show the maximum splitting magnitude for wave propagating parallel to the fractures

(azimuth = 90◦), but with a very different frequency response. For this propagation direction,

splitting is controlled only by the tangential compliance, which in the case of the squirt-flow model

is frequency independent since it is not affected by fluid compressibility (Figure 2). Conversely, for

the scattering model the tangential compliance is strongly frequency dependent (Figure 6), resulting

in observable frequency dependent anisotropy. It should be noted that our model assumes perfectly

aligned fractures, an arrangement which is unlikely to occur in nature. Tod (2001) showed that a

‘nearly aligned’ fracture set can behave differently from a perfectly aligned set, and we suspect that

a natural fracture set would show some frequency dependence for fracture parallel propagation.

[Figure 7 about here.]
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Both ZN and ZT play a role in the splitting for waves propagating at oblique angles to the

fracture, with ZN becoming increasingly important as you approach the fracture normal. In the

scattering model both compliances are affected in a similar way, therefore we see only subtle vari-

ations in the frequency dependence for different propagation directions (other than a decrease in

overall splitting magnitude as you approach the fracture normal). For the squirt-flow model, how-

ever, since ZN and ZT diverge substantially at higher frequencies, we see a large azimuthal variation

in frequency dependent anisotropy. In general δVS decreases as frequency increases, except for cer-

tain propagation directions closer to the fracture normal where splitting decreases until it reaches

zero, and then begins to increase again (propagation directions of 15◦, 30◦, and 45◦ in Figure 7a).

The decrease and then increase in δVS is also accompanied by a 90◦ flip in fast wave polarization

and this is due to an azimuthal and frequency dependent slowness surface singularity developing

(i.e. when the fast and slow shear waves have the seem wave speed). This phenomenon will only

occur if the ratio of normal to tangential compliance, ZN/ZT , is sufficiently low, and can possibly

be used as a means to distinguish between the models in certain situations.

Sensitivity analysis of scattering model

Here we use synthetic modeling of shear wave splitting to test the sensitivity of the each of the

input parameters of the scattering model (See Al-Harrasi et al., 2011b, for a sensitivity analysis of

the squirt-flow model). For the base model we assume average background VP and VS velocities of

2800 m/s and 1470 m/s, respectively and unless stated otherwise, an average individual fracture

tangential compliance of BT0 = 10−10 m/Pa, equivalent-media compliance of ZT0 = 10−11 Pa−1,

relative roughness of σh
〈h〉 = 1.0 and a wave propagation direction of 75◦ from the fracture normal.

Figure 8 shows model sensitivity to each of these input parameters.
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[Figure 8 about here.]

As expected, the amount of frequency dependence is strongly affected by the average compliance

of the individual fractures (BT0, Figure 8a). For this example fractures with compliances on the

order of 10−10 m/Pa and higher may produce observable FDA at microseismic frequencies, however

stiffer fractures show little frequency dependence. It should be noted that while BT0 is varied, the

fracture spacing, H, is also varied as per equation 4 to maintain a constant mean effective-media

compliance ZT0.

Figure 8b shows the effect of changing ZT0 by varying the spacing of fractures with a fixed BT0.

Here the main effect is to increase the magnitude of splitting with higher values of ZT0, yet the

frequency dependence is not strongly affected. Within the Carbonate field of the data-set, although

some SWS measurements showed anisotropy as high as 18%, most measurements ranged between

0–10% (Al-Harrasi et al., 2011a), thus ZT0 is likely lower than 10−10 Pa−1.

The effect of relative roughness on the frequency response is shown in Figure 8c. As expected

a greater amount of frequency dependence is observed as roughness increases. It is not clear how

high a roughness parameter may naturally occur in fractures, however Zimmerman and Main (2003)

shows data on hydraulic transmissivities of simulated fractures which varied in roughness between

0.1–2.

Figure 8d shows the effect of varying the propagation direction relative to the fracture orien-

tation. Here the main effect is a shift in the magnitude of splitting, with maximum anisotropy

observed parallel to the fracture (90◦) and no splitting normal to the fracture (0◦).
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FRACTURE INVERSION EXAMPLE

Although the squirt-flow and scattering models differ in the underlying mechanism producing the

frequency dependent compliance (and anisotropy), they are similar in that they are both sensitive

to the average size or compliance of the constituent fractures. Within the microseismic frequency

band both models predict high frequency dependence for large open fractures, but not for smaller

stiff fractures. Thus both models can potentially be used to help differentiate between fracture-

and crack-induced anisotropy.

The question of which mechanism will dominate at microseismic frequencies is more difficult.

To better illustrate the possible contributions of each mechanism we attempt to invert fracture

properties using an example of frequency dependent shear-wave splitting data taken from the

study of Al-Harrasi et al. (2011b). In this study and their companion paper (Al-Harrasi et al.,

2011a), the authors characterize a fractured carbonate gas field in Oman using both broadband

and frequency dependent shear-wave splitting analysis derived from microseismic data. The events

were recorded using oriented 3-component geophones placed in downhole arrays. Splitting analysis

was restricted to source/receiver pairs located within the same rock unit, such that anisotropy

along the ray path may be attributed entirely to a single formation and errors due to heterogeneity

could be minimized. For each 3-componant waveform, splitting parameters φ (the polarization of

the fast shear-wave) and δt (the time delay between the fast and slow shear-waves) are estimated

using the approach of Wuestefeld et al. (2010). First, the three component data are rotated from its

acquisition geometry into rayframe coordinates (the longitudinal component which maximizes the

P-wave energy, and the orthogonal SH and SV components which contain the S-wave energy). A

window is placed around the S-arrival. If the wave passes through an isotropic medium the particle
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motion in the SH-SV plane within the window should be approximately linear, however if it passes

through an anisotropic medium the S-wave will begin to split resulting in a more elliptical particle

motion. The analysis performs a grid search over all possible fast polarizations and delay times to

find splitting parameters that best linearize the particle motion, thus removing the observed effects

of splitting. The analysis is done using 100 windows around the S-arrival, and a cluster analysis

is used to infer the stability of the solution (Teanby et al., 2004). The technique also provides an

objective measure of the quality of the measurement (see Wuestefeld et al., 2010, for details).

Only waveforms which produced high quality splitting measurements using the broadband data

were used for frequency dependent analysis. To do this Al-Harrasi et al. (2011b) first filtered the

waveforms using a series of narrow frequency bands of 1 octave width (i.e 10-20 Hz, 15-30 Hz,

20-40 Hz, 30-60 Hz. . . etc). The splitting approach and associated quality control of Wuestefeld

et al. (2010) is then applied to the filtered waveforms to estimate the splitting parameters. If

a single waveform does not produce a sufficient number of high quality measurements to clearly

show the frequency dependence, then it is not used. The time delay, δt, is then normalized by the

path length to estimate percentage difference in the velocity of the fast and slow waves, δVS . The

data plotted in Figures 9 and 10, show an example of good quality frequency dependent splitting

results obtained by Al-Harrasi et al. (2011b) from a single waveform within the N-A gas reservoir.

The estimated magnitude of anisotropy is plotted against the dominant frequency of each filtered

waveform.

In order to model frequency dependent splitting using real data we assume that the anisotropy

is the result of a single set of aligned fractures embedded within a homogeneous isotropic medium.

These conditions are unlikely to be strictly true, reservoir rocks often show some degree of anisotropy
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due to rock fabric, however, in carbonate rocks intrinsic anisotropy is generally found to be negligible

Wang (2002). Heterogeneity along the ray-path is not considered, however, we believe that it is

minimized by considering only source/reciever pairs within the same rock unit. We note that in

our inversions we make no prior assumptions about fracture dip. Fracture orientation is defined

as the angle between the ray-path and the fracture normal, which can be achieved by changing

either strike or dip. This is in contrast to the inversions of Al-Harrasi et al. (2011b), which assumed

horizontal propagating waves and a fixed dip angle.

Of the two freqency dependent anisotropy mechanisms described the squirt-flow model has

many more variables controlling the frequency band most affected. In addition to fracture size,

the frequency response is also very sensitive to fluid and rock properties such as viscosity and

permeability, which control the mineral-scale relaxation time, τm. Al-Harrasi et al. (2011b) applied

an inversion scheme to solve for squirt-flow fracture parameters which best fit the data. We have

reproduced their results, which yielded an estimated fracture radius of 2.75 m in Figure 9. For the

inversion they used an assumed τm of 9.5× 10−7 s. However, this was not derived from laboratory

measurements on the field rocks, instead the technique of Chapman et al. (2003a) was used to

estimate τm from published data which used different rocks and fluid types. Extrapolation of τm

from one rock type to another can lead to significant and unquantifiable error. The dashed lines

in Figure 9 show that increasing and decreasing τm by an order of magnitude has a substantial

effect on the predicted frequency response. The roles of fracture size and τm in controlling the

frequency response are governed by equation 2 which shows that there is a one-to-one trade-off

in their respective accuracies. If the estimated τm is an order of magnitude too high, then the

apparent fracture size will be an order of magnitude too low. Clearly, care must be taken when

interpreting the results of the inversions, as accurate results require detailed laboratory analysis to
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constrain the input parameters.

An additional weakness of the squirt-flow model is that it assumes that both cracks and fractures

can be modeled with a very simple common shape and aspect ratio. While a simplified circular

penny-shaped geometry may be justified for small cracks, it is unlikely that a fracture of this type

larger than a few centimeters would remain open at reservoir pressures (Myer, 2000; Worthington,

2008). A more realistic representation would have these larger fractures held open by a number

of weld points over their surface, similar to the fractures described in the scattering model. It is

likely that this would result in a departure from the model predictions for these larger fractures,

although it is unclear how to quantify this divergence.

[Figure 9 about here.]

Conversely the scattering model is not dynamic in nature, but simply the result of waveform

averaging over heterogeneous fractures. The band of frequency affected is determined almost en-

tirely by the mean fracture compliance, with the width of the band expanding for rougher fractures

(Figure 6).

To test whether a scattering model could produce the frequency dependent anisotropy observed

by Al-Harrasi et al. (2011b) we employ an inversion scheme to solve for the best fitting fracture

parameters. We perform a grid search over ray azimuth, mean individual fracture tangential com-

pliance (BT0), mean effective-media tangential compliance (ZT0, related to fracture spacing, H,

through equation 4), and relative fracture roughness ( σh〈h〉). We pick the combination of parameters

which best minimizes the RMS misfit between the observed and modeled data. First we search over

a coarse grid (power steps of 10N for BT0 and ZT0, 10◦ steps for azimuth, and 0.5 steps for σh
〈h〉) to
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find the best fitting order of magnitude compliances. We then perform a finer search around the

best fitting parameters from the first step.

[Figure 10 about here.]

Figure 10 show the best fit inversion results for the scattering model. Although the model

provides a good fit to the data, the parameters are generally less well constrained than the squirt-

flow model, and many of them fall outside the range that we would reasonably expect from a

fractured reservoir. The best fitting mean fracture compliance, for instance, is 2.6 × 10−9 m/Pa.

Comparing this to the admittedly rather sparse compilation of experimental data from Worthington

and Lubbe (2007) (Figure 4), we see that most field-scale fractures range in compliance from

around 10−13–10−11 m/Pa; more than two orders of magnitude lower than our inverted result.

While there does exist a single estimate of fracture compliance on the order of 10−9 m/Pa, this

is from a major fault zone rather than a typical fractured reservoir (Worthington and Hudson,

2000). Additionally this estimate was made based on a possibly faulty assumption that a seismic

Q anomaly associated with the fault could be explained by a very low tangential compliance,

rather than through some other mechanism (Hobday and Worthington, 2012). As indicated by the

sensitivity analysis (Figure 8), a reduction of BT0 to levels more in line with experimental data

would dramatically reduce the frequency dependence. Similarly, the inferred relative roughness

parameter of 3.3 is higher than we would expect, however this parameter is much less constrained.

A further problem with the inversion of Figure 10, is that the inferred fracture spacing is very

low (22 cm) given that the individual fracture compliances are similar to “major fault zones”.

This produces an effective-media compliance of ZT0 = 1.2 × 10−8 Pa−1. Although the inverted

splitting magnitudes seem reasonable, this is for an inverted propagation direction of just 10◦ from
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the fracture normal, where we would expect low magnitude splitting. The sensitivity analysis

(Figure 8b) shows that ZT0 this high would produce implausibly high splitting magnitudes for

waves propagating close to the strike of the fractures. To address this we performed an additional

inversion (not shown) where the wave azimuth was restricted to 90◦ (fracture parallel). This

inversion provided a poorer fit to the data, and yielded a similar fracture compliance (BT0 = 3.16×

10−9 m/Pa), but with a much wider spacing (26 m). While this arrangement is somewhat more

reasonable, it still requires implausibly high fracture compliances. Furthermore, very compliant

fractures require much larger spacing to produce the same effective medium compliance as stiff

fractures (equation 4). Fractured rock can only validly be represented as an effective medium if the

fracture spacing is small relative to the seismic wavelength, regardless of which model is used. The

fracture spacing required to produce a reasonable effective medium compliance for the scattering

model would likely violate this rule for very compliant fractures.

CONCLUSIONS

We have compared two viable mechanisms for frequency dependent anisotropy within fractured

reservoirs: (1) The multi-scale squirt-flow model of Chapman (2003), which considers the effect of

wave induced fluid flow between fractures and equant pores. (2) A wave scattering model due to

fracture roughness, based on the method proposed by Pyrak-Nolte and Nolte (1992). Although

the two models differ greatly in their underlying mechanism they both show a similar sensitivity

to the average compliance of the component fractures. With large open fractures affecting lower

frequency bands than small stiff fractures.

Based on reasonable constraints on maximum fracture compliances expected in field settings,
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the frequency dependent effect of scattering is expected to be relatively minor at microseismic

frequencies, and can likely be ignored. However, the scattering mechanism may become important

at higher frequencies. For example, for cross hole surveys in the kHz range, or for ultrasonic

laboratory experiments. A consideration should also be made when upscaling laboratory estimates

of dynamic compliance for field-scale problems.

The the squirt-flow model is better suited for explaining frequency dependent anisotropy from

microseismic data. However, the model should be applied with the caveat that detailed knowledge

of fluid properties and rock matrix permeability are required to constrain results. In particular,

an incorrect estimate of the τm parameter can lead to significant errors in the inferred dominant

fracture size. Nevertheless, the model shows great promise for explaining frequency dependent

anisotropy in fractured reservoirs, and even without detailed knowledge of τm, may be used to

gauge the relative fracture sizes within the same field to potentially identify more highly fractured

“sweet spots”.
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APPENDIX A

SQUIRT-FLOW EQUATIONS

The multi-scale squirt-flow model of Chapman (2003) does not explicitly solve for fracture com-

pliance. Instead it calculates the effective stiffness tensor, Ceff , by applying corrections to the

isotropic background stiffness tensor, Ciso, directly. The expressions for the elements of Ceff are

of the form:

Ceff
ijkl = C iso

ijkl − φpC
1
ijkl − εcC

2
ijkl − εfC

3
ijkl, (A-1)

where C1, C2, and C3 are the contributions from pores, grain-scale cracks, and aligned fractures,

respectively, and are multiplied by porosity φp, crack density εc, and fracture density εf . C1, C2,

and C3 are functions of the Lamé parameters, fluid properties, the relaxation time τm, fracture

radius af , and frequency ω. For the precise equations for each component of the stiffness tensor

see Chapman (2003). For applications with high porosity and frequencies below the mineral scale

squirt-flow frequency, the crack density term in equation A-1 can be neglected (Chapman et al.,

2003b).

To estimate the effective media compliances of the fractures, we employ the excess compliance

approach of Schoenberg and Sayers (1995) in reverse. In addition to calculating the effective stiffness

tensor of the fractures rockmass using equation A-1, we also calculate the equivalent stiffness tensor

with the fractures omitted (i.e. only considering the background rock and the porosity, Ciso+p).

The excess compliance tensor of the fracture set can be estimated by inverting these stiffnesses and

subtracting the effect of the background and porosity contributions,

Sf ≈ (Ceff )−1 − (Ciso+p)−1. (A-2)
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Sf should be approximately in the form of equation 1, such that ZN and ZT can be extracted.
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Figure 1: Schematic diagram showing the effect of oriented fracture sets on seismic and permeability
anisotropy. The effect of fractures on seismic velocities is ambiguous, as the same anisotropy can be
caused by a large number of small stiff fractures or a smaller number of open compliant fractures.
Fluid flow, however is dominated by large fractures, so the models are expected to have different
permeability anisotropy.
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Figure 2: Predicted normal (solid line) and tangential (dashed line) fracture compliances as a
function of frequency for different fracture sizes using the squirt-flow model of (Chapman, 2003).
Tangential compliance shows no frequency dependence, while normal compliance decreases with
increasing frequency. The frequency band where the change occurs, is highly sensitive to the
fracture size. See appendix A for details of how these are calculated.
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Figure 3: Predicted transmission coefficient (|T |, equation 5) as a function of dimensionless fre-
quency (ωρVP,SBN,T /2) for a wave propagating normal to a fracture (solid line). Dotted and dashed
lines indicate transmission coefficients for fractures an order of magnitude more complaint and less
compliant, respectively. For a fracture with heterogeneous compliance there will be a frequency
range where compliant portions will backscatter energy while stiffer portions continue to transmit
it. The transmitted wave will only sample the stiffer portions of the fracture leading to an apparent
frequency dependent compliance.
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Figure 4: Laboratory and field estimates of fracture compliance as a function of fracture size.
From the compilations of Worthington and Lubbe (2007), Hobday and Worthington (2012) and an
additional measurement from Verdon and Wüstefeld (2012).
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Increasing 

roughness

Figure 5: Predicted log-normal compliance distributions (equation 12) for different values of relative

roughness
(
σh
〈h〉

)
. For low roughness the distribution is approximately normal, but as roughness

increases the distribution becomes increasingly skewed towards lower compliance, but with a long
tail.
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Increasing mean compliance
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Figure 6: a) Predicted frequency dependent normal (BN , solid) and tangential (BT , dashed) com-
pliances due to scattering for various values of mean tangential compliance (BT0), using a relative
roughness of 1.0. b) Predicted frequency dependent compliances for different values of relative
roughness, using a BT0 of 10−10 m/Pa. Apparent compliances are calculated with equation 10
using transmission coefficients from equation 15, BN0/BT0 is assumed to be 0.9. Compliances are
normalized by BT0.
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(a) (b)

Figure 7: Predicted shear wave splitting for (a) the squirt-flow model, and (b) the scattering
model as a function of frequency for different wave propagation directions relative to the fracture
normal direction. Solid and dashed lines alternate for successive ray azimuths for clarity. Both
models show the greatest magnitude of splitting for waves propagating parallel to the fracture (90◦),
however since these waves are only affected by tangential compliance the squirt-flow model shows
no frequency dependence. For other propagation directions the normal compliance also plays a role
and frequency dependence is observed for both models. Details for model parameters are given in
the text.
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Figure 8: Predicted frequency dependent shear-wave splitting for the scattering model, showing
sensitivity of the input parameters.
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RMS error = 1.341960

strike = 62.000000o

density = 0.144544

radius = 2.754229 m

�
m
 = 9.5 × 10-7 s

�
m
 = 9.5 × 10-8 s

�
m
 = 9.5 × 10-6 s

Figure 9: Inverted frequency dependent shear wave splitting data from a fractured limestone reser-
voir using the squirt-flow mechanism. Solid line shows best fit model from (Al-Harrasi et al., 2011b),
which assumed a relaxation time of τm = 9.5× 10−7 s, and yielded a fracture radius, af , of 2.75 m
a fracture density of 0.145 with the ray path traveling approximately 60◦ from the fracture normal.
The misfit plot between fracture radius and relaxation time highlights the large tradeoff between
the accuracy of these parameters. Dashed lines show the same model but with τm increased and
decreased by an order of magnitude.
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Figure 10: Inversion of frequency dependent shear wave splitting data using the scattering mech-
anism. The grid searches over wave azimuth (0◦ fracture normal, 90◦ fracture parallel), fracture
roughness, mean fracture compliance (BT0), and mean effective-media compliance (ZT0). The thick
contour shows the 90% confidence interval. The blue lines indicate the best fitting fracture param-
eters. The bottom right plot shows the observed data (dots) and the best fitting modeled results
(line). Although the model does provide a good fit, the inverted roughness and BT0 are much
higher than would be reasonably expected for reservoir fractures.
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Table 1: List of symbols used in the models
Symbol Description Unit

ZN , ZT Normal and Tangential effective media compliances of fracture sets Pa−1

BN , BT Normal and Tangential Individual fracture compliances m/Pa

Squirt-flow model parameters

τm, τf mineral-scale and fracture-scale relaxation time s
ζ Average grain size m
af Average fracture size m

Scattering model parameters

BN0, BT0 Mean low-frequency individual fracture compliances m/Pa
σh
〈h〉 Relative roughness parameter dimensionless

H Average fracture spacing m
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