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ABSTRACT
Like most other industrial activities that affect the subsurface, hydraulic fracturing
carries the risk of reactivating pre-existing faults and thereby causing induced seis-
micity. In some regions, regulators have responded to this risk by imposing traffic
light scheme-type regulations, where fracture stimulation programs must be amended
or shut down if events larger than a given magnitude are induced. Some sites may be
monitored with downhole arrays and/or dense near-surface arrays, capable of detect-
ing very small microseismic events. However, such monitoring arrangements will not
be logistically or economically feasible at all sites. Instead, operators are using small,
sparse arrays of surface seismometers to meet their monitoring obligations.

The challenge we address in this paper is to maximise the detection thresholds
of such small, sparse, surface arrays so that they are capable of robustly identifying
small-magnitude events whose signal-to-noise ratios may be close to 1. To do this, we
develop a beamforming-and-stacking approach, computing running short-term/long-
term average functions for each component of each recorded trace (P, SH, and SV),
time-shifting these functions by the expected travel times for a given location, and
performing a stack.

We assess the effectiveness of this approach with a case study using data from a
small surface array that recorded a multi-well, multi-stage hydraulic fracture stim-
ulation in Oklahoma over a period of 8 days. As a comparison, we initially used a
conventional event-detection algorithm to identify events, finding a total of 17 events.
In contrast, the beamforming-and-stacking approach identified a total of 155 events
during this period (including the 17 events detected by the conventional method). The
events that were not detected by the conventional algorithm had low-signal-to-noise
ratios to the extent that, in some cases, they would be unlikely to be identified even
by manual analysis of the seismograms. We conclude that this approach is capable
of improving the detection thresholds of small, sparse arrays and thus can be used to
maximise the information generated when deployed to monitor industrial sites.

1 INTRODUCTI ON

Over the past 15 years, the use of hydraulic fracturing to
extract hydrocarbons from shale and other low-permeability

∗E-mail: James.Verdon@bristol.ac.uk

rocks has seen substantial growth. Wang and Krupnick (2013)
provide a useful history describing how hydraulic fracturing,
a well-established technique used in conventional reservoirs
for 65 years, came to be used to extract gas from shale rocks.
Hydraulic fracturing intentionally generates new fracture net-
works in the target rocks. This fracturing is accompanied by
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Beamforming to detect seismometer arrays 1583

microseismic activity, i.e., very small seismic events that can
be detected only using specialised monitoring arrays.

However, in a number of cases, the stress and pressure
changes induced by hydraulic fracturing have been sufficient
to reactivate pre-existing critically stressed faults, producing
larger earthquakes of sufficient magnitude to be felt by lo-
cal populations (e.g., BC Oil and Gas Commission 2012,
2014; Clarke et al. 2014; Friberg, Besana-Ostman and Dricker
2014; Darold et al. 2014; Skoumal, Brudzinski and Currie
2015; Schulz et al. 2015; see summary by Verdon and Kendall
(2015)).

Given the very large number of hydraulic stimulations
performed around the world, instances of felt seismic events
are very rare and can be compared favourably with respect
to many other industrial activities such as hydroelectric reser-
voir impoundment, coal mining, geothermal energy extrac-
tion, and deep re-injection of wastewater (National Research
Council 2013). Nevertheless, in some jurisdictions, legislators
have responded by imposing traffic light scheme (TLS) regu-
lations that require operators to cease their activities if earth-
quakes above a given magnitude are deemed to have been
induced by hydraulic fracturing.

For example, in Alberta and British Columbia, Canada,
an amber warning is issued if events exceed ML = 2.0, and
operations must be stopped if events exceed ML = 4.0. In
Ohio, where hydraulic fracturing is conducted within 3 miles
of a known seismogenic fault, operations must be paused if an
event larger than ML = 1.0 is detected. The UK government
has mandated a TLS such that, if hydraulic fracturing induces
an event larger than ML = 0.0, then flowback periods must be
extended and injection volumes used for future stages (amber
status) must be reduced, whereas if stimulation induces events
larger than ML = 0.5, then injection must cease immediately
(Green, Styles and Baptie 2012).

Small-magnitude induced events can be monitored using
downhole geophone arrays (e.g., Maxwell et al. 2010) or by
very large and very dense (typically >1000 stations) surface
arrays (e.g., Chambers et al. 2010a). These arrays can de-
tect very small events, which are used to map the hydraulic
fractures. However, such arrays can be expensive to deploy
and may not be logistically feasible at many sites. Generally
speaking, most operators will not deploy such arrays at every
site. Instead, in response to new injection-induced seismicity
regulations, operators of shale gas sites (and of other types of
operation thought to be prone to induced seismicity) are be-
ginning to deploy small (10–20 stations) networks of portable
surface seismometers in order to monitor induced seismicity.
These arrays are relatively inexpensive, flexible, and easily

Figure 1 (Triangles) Receiver positions and (grey star) event position
used for the synthetic model. The event is modelled at a depth of
3500 m.

Table 1 One-dimensional layered velocity model used to generate the
synthetic model

Depth to layer top (m) VP (m/s) VS (m/s)

0 1300 765
100 2000 1176
250 2400 1412
500 2700 1588

1000 2900 1706
1500 3200 1882
2000 3500 2059
2500 3800 2235
3000 4100 2412
3500 4300 2529
4000 4500 2647

deployed (from a logistical perspective), making them an at-
tractive proposition where regulations mandate monitoring at
every operational site.

Given the expected deployment of small, sparse, sur-
face arrays at future shale gas sites (and other sites prone
to injection-induced seismicity), the challenge we address
in this paper is to develop methods that improve detection
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thresholds for such arrays, bearing in mind that seismic noise
levels around shale gas sites may often be quite high.

Our motivation for doing so is twofold.
� In the general case, by improving detection thresholds and

thereby detecting more smaller events, an operator will
have more information with which to inform their stim-
ulation program.

� In the specific case, we concern ourselves with the UK’s
TLS, where operators must be able to guarantee detection
thresholds lower than ML = 0.0 (Green et al. 2012). Al-
though the UK is generally considered to be a quiet place
in terms of seismicity, it is not quiet in terms of seismic
noise. This noise may be both anthropogenic (e.g., roads,
railways, industrial, and agricultural activities) and natu-
ral (e.g., wind and waves). Therefore, achieving detection
thresholds lower than ML = 0.0 with an array of surface
seismometers may be challenging (e.g., Horleston et al.

2013).
Commonly, earthquakes are detected using automated pick-
ing algorithms that identify changes in energy and/or fre-
quency content of the recorded traces (Lomax, Satriano and
Vassallo 2012), with the additional constraint that such trig-
gers be identified on multiple stations of a network within a
specified time window.

However, alternative event detection methods based on
delay-and-stack methods are also available (also referred to
as beamforming or focusing imaging). Based on expected
phase arrival times from a given subsurface point, traces
are time-shifted such that coherent phase arrivals will be
aligned. When stacked, these coherent arrivals interfere con-
structively, boosting the signal, whereas incoherent noise in-
terferes destructively, reducing the noise. The net result is
an improvement in signal-to-noise ratios such that small
events with low-signal-to-noise ratios can be detected even
where no clear arrival is visible or pickable on individual
traces.

The ability of such beamforming (or delay-and-stack)
methods to detect smaller-magnitude events, with signal-to-
noise ratios much less than 1, was demonstrated for large
and dense arrays (e.g., Chambers et al. 2010a; Duncan and
Eisner 2010). In this paper, we adapt such a method for use
with data from small surface arrays as might be deployed
to monitor induced seismicity around industrial sites. How-
ever, rather than stacking the raw waveforms as per Chambers
et al. (2010a), we use a method that is more similar to that
proposed by Grigoli et al. (2014), who stack functions based
on running short- and long-term averages of trace character-
istic functions. Furthermore, while Chambers et al. (2010a)

use only P–wave arrivals and Grigoli et al. (2014) use P–
waves and a single combined S–wave arrival, in this study, we
utilise a method that combines stacks of both P, SH, and SV

phases.
Our primary aim is to assess whether such methods are

capable of detecting and locating events that would be missed
by the more commonly used event detection algorithms that
are based on automated phase picking algorithms. To do so,
we apply this approach to data recorded during hydraulic
fracturing of a well in Oklahoma. Whereas Grigoli et al.

(2014) examined the capability of a short-term/long-term av-
erage ratio stacking algorithm to relocate events more ac-
curately (events with a reasonably high-signal-to-noise ratio
that had already been identified with conventional automatic
picking), in this study, we seek to compare the event detection
capabilities of such an algorithm to determine whether this
approach is capable of detecting events that would be missed
by conventional automatic phase picking algorithms.

2 M ETHOD

2.1 Beamforming and stacking

We begin by generating both P– and S–wave travel-time
lookup tables from candidate event locations to each receiver.
Shale rocks are usually very anisotropic (e.g., Kendall et al.

2007), and recent studies have shown that vertical transverse
isotropic (VTI) anisotropic velocity models are often neces-
sary to accurately image microseismic events recorded in shale
basins using surface arrays (e.g., Eisner et al. 2011; Grechka
2015). We therefore develop a method that is capable of in-
corporating VTI anisotropic velocity models where necessary.
We therefore compute travel times for P, SH, and SV phases
(tP(x,n), tSH(x,n), and tSV(x,n)) for each receiver n, where x
is a potential source location coordinate. A range of methods
are available for computing travel times in anisotropic media
(e.g., Guest and Kendall 1993; Fomel 2004).

From these travel-time tables, we compute the arrival
times across the array relative to the first P–wave arrival at
any receiver:

dtP (x, n) = tP (x, n) − min(tP (x)),
dtSH

(x, n) = tSH
(x, n) − min(tP (x)),

dtSV
(x, n) = tSV

(x, n) − min(tP (x)),

(1)

where min(tP(x)) refers to the smallest value of tP from point
x to any receiver n.

For each set of waveforms to be analysed, we perform
a search over candidate event locations. For a candidate
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Figure 2 Synthetic waveforms used to assess the STA/LTA stacking algorithm using signals simulated by a finite-difference waveform simulation
and noise from a temporary monitoring array deployed for baseline seismicity assessments prior to shale gas operations in the UK. (Red) North,
(blue) east, and (green) vertical components are overlain for each receiver. The P– and S–wave arrival times based on the resulting hypocentre
are shown by black and magenta ticks. The ML = 0.5 event can be clearly seen above the noise levels, but as the event size is reduced, the
arriving waveforms become harder to see above the noise and could easily be missed by auto-picking algorithms.

location x, we begin by rotating the horizontal components
into a radial (SV) and transverse (SH) coordinate system using
the geographical azimuth between the source and the receiver.
For each component (V, SH, SV), we compute a running short-
term/long-term average (STA/LTA) ratio based on the method
described by Allen (1978). For each trace y, at time i, a char-
acteristic function C is computed

C(i) = y(i)2 + 3(y(i) − y(i − 1))2. (2)

The short- and long-time averages over sample lengths nS

and nL are computed as

STA(i) =

i+nS−1∑
j=i

C( j)

nS
,

LTA(i) =

i−1∑
j=i−nL

C( j)

nL
, (3)

and their ratio as

R(i) = STA(i)/LTA(i). (4)

For a given candidate event location x, the STA/LTA time
series for each trace are time-shifted based on dtP and dtS. The
aligned traces are then summed to create a stack

�v(x, i) =
[∑n

k=1 Rk
v

(
i − dtP (x,k)

δ

)]
n

,

�SH
(x, i) =

[∑n
k=1 Rk

SH

(
i − dtSH

(x,k)

δ

)]

n
, (5)

�SV
(x, i) =

[∑n
k=1 Rk

SV

(
i − dtSV

(x,k)

δ

)]

n
,

where δ is the time-series sampling rate, and n is the
total number of stations. The overall stack function is
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Figure 3 Map and cross-sectional slices through the S’(x) volume for the different magnitude synthetic events. For the ML = 0.5, 0.25, and 0.0
events, a clear maximum is found at the known event location (x= [4500 4500 3500]). For the ML = -0.25 event, local maxima are found that
probably correspond to the spikes in the noise, but they are much smaller than the maxima from the true event locations. Note that the colour
scale changes for each image.

determined from the product of the V, SH, and SV

stacks

S(x, i) = �v(x, i)�SH(x, i)�SV(x, i). (6)

The resulting stack function is a four-dimensional func-
tion of both spatial position and time. However, the function

can be simplified to take the maximum value at each spatial
point within a given time window i to i+τ

S′(x) = max(S(x, {i, . . . , i + τ })), (7)

reducing the results to a three-dimensional (3D) data cube
(Chambers et al. 2010a).
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Figure 4 For each modelled event, we show the p–, sV– and SH–wave stacks, and the combined stack S(x), which is the product of the stacks
of the three phases. For the ML = 0.5, 0.25, and 0.0 events, a clear peak is found at the expected event occurrence time. While peaks are found
for the ML = −0.25 event, they are far smaller and do not correspond to the event but to peaks found in the noise.

We note in passing that the ability of beamforming meth-
ods to focus an event in the correct position is dependent
on the use of a correct velocity model and that an incor-
rect velocity model can affect the focusing power (and, hence,
the ability to detect events). Chambers, Kendall and Barkved
(2010b) examined the effect of velocity model inaccuracies
on beamforming methods, finding that modest perturbations
to a velocity model (±5%) affected the resulting depth po-
sition of the event but did not affect the focusing power of
the image. Nevertheless, we stress the importance of using a
well-calibrated model wherever possible. Velocity models at
industrial sites can often be calibrated with other geophysi-

cal observations such as controlled-source reflection seismic
imaging, sonic well logging; vertical seismic profiling; and by
attempting to relocate string shots or other downhole sources
whose position is known a priori.

2.2 Searching for events

Commonly, where beamforming-and-stacking-type event de-
tection algorithms are used, a grid search is performed to
find locations where the stack value exceeds a given thresh-
old (e.g., Chambers et al. 2010a). This grid search over
three spatial dimensions can be hugely expensive from a
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Figure 5 Monitoring setup for the case study. Surface broadband stations are marked by triangles, and the lateral extent of the treatment well
is marked by the solid line. Note that stations GUR04 and GUR14, and GUR02 and GUR12, are co-located within a few metres of each other.
The dashed square shows the bounds of the search for candidate event locations. The square shows the position of the well pad, with the track
of one of the stimulated wells shown by the black line. The track of the other well is not marked, but it runs adjacent to the marked well.

computational point of view, making the use of such meth-
ods in real time a challenging proposition (though not im-
possible as long as sufficient computational power can be
brought to bear). Instead, we seek alternative ways to search

Table 2 FilterPicker parameters used to identify events. See Lomax
et al. (2012) for full descriptions of these parameters

Parameter Value

Sampling rate 200 Hz
Tfilter 2s
Tlong 10s
Threshold #1 10
Threshold #2 10
TUP 20 samples

the parameter space in order to reduce the computational
cost.

We note that the stack power as a function of candidate
position tends not to be particularly smooth: local maxima
are common. Therefore, directional search algorithms are not

Table 3 One-dimensional layered velocity model used to locate events
at the case study site

Depth to layer top (m) VP (m/s) VS (m/s)

0 3790 1930
400 3910 1990
900 4038 2060

4400 5230 2670
4900 5260 2680
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Figure 6 Example event detected by the conventional automated picking algorithm (in the same format as in Fig. 2). Black and magenta ticks
indicate the manually re-picked P– and S–wave arrivals. Data have been band-pass filtered between 1 Hz and 50 Hz.

appropriate as they tend to become trapped in these local
maxima. Instead, global search algorithms are required. In
this paper, we use the neighbourhood algorithm described by
Sambridge (1999a) to search the parameter space. In the real
example that follows below, we search for events within a
volume of dimensions 3.5 km×3.5 km×3 km. We find that,
where an event is present, a convergent maximum is found
typically within 350 trial positions using the neighbourhood
algorithm search method. Searching the same volume over
a grid with 20-m spacing would entail over 4000000 trial
positions, whereas even using 100-m spacing would entail
over 30,000 trials. The improvements afforded by using the
neighbourhood algorithm over a grid search, therefore reduc-

Table 4 Parameters used in the STA/LTA stacking algorithm applied
to the case study site to search for events

Parameter Value

Sampling rate 200 Hz
Trace window length (τ ) 30s
Short time window 10 samples
Long time window 200 samples
Band pass Filtering 1 – 50 Hz
Event candidate threshold S’(x) > 15

ing computational expense by orders of magnitude. Once a
convergent maximum has been found, the imaging resolution
can be appraised using Bayesian integration as described by
Sambridge (1999b).

3 S YNTHETIC TESTS

Before applying it to a real example, we demonstrate our
method using a synthetic dataset generated using the 3D
finite-difference waveform-modelling package E3D (Larsen
and Schultz 1995). We simulate a monitoring array of 12
seismometers with stations positioned in two concentric cir-
cles with radii of 2 and 4 km (Fig. 1), as might typi-
cally be used to monitor induced seismicity at an industrial
site. We use a one-dimensional (1D) layered velocity model
(listed in Table 1). In this case, we use an isotropic velocity
model. The source is represented by a Ricker wavelet with
a dominant frequency of 10 Hz. The model sampling rate is
200 Hz.

Waveforms are simulated from a strike-slip event at
3.5-km depth at the centre of this array (x= [4500 4500
3500]). The amplitudes of the modelled waveforms are scaled
such that they represent events with ML of 0.5, 0.25, 0.0,
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Figure 7 Map and cross-sectional views of the hypocentres of events detected using the conventional automated picking algorithm. These events
were located by travel-time inversion of manually picked P– and S–wave arrivals. Events are coloured by their occurrence date.

and −0.25, as measured on the UK’s local magnitude scale
(Ottemöller and Sargeant 2013).

Synthetic data are often “contaminated” with noise de-
rived from a statistical model (for example, Gaussian). How-
ever, doing so will not test the ability of our algorithm to
detect events that are overlain on “real” ambient noise, which
is often non-stationary and may be correlated across an array
(Chambers et al. 2010a).

Instead, we overlay our modelled waveforms on real
noise recorded by a temporary array of Güralp CMG-6TD
broadband seismometers deployed in the northwest of Eng-
land in an area in which shale gas exploration licenses have
been awarded. The instruments were buried by hand to depths
of approximately 0.5 m. This array was installed to provide
baseline monitoring of shale gas operations in the UK. The
use of real noise collected in the UK ensures that the noise is
representative of conditions that might be expected when a
TLS is in operation. Figure 2 shows the resulting waveforms,
consisting of synthetic events superimposed on real noise.

For each synthetic event, we search over a 3D volume
for maxima in S’(x) that would indicate that an event is de-
tected. Figure 3 shows slices through the S’(x) volume for each

different event size, whereas Fig. 4 shows the stacks for the P–,
SH–, and SV–waves. We find that, for the ML = 0.5, 0.25, and
0.0 events, a clear maximum in S’(x) is found that corresponds
to the known position of the synthetic event. This peak is also
apparent on the stacks of the individual waveforms, especially
the P– and SH–wave stacks, albeit less prominent on the SV–
wave stacks, as might be expected for the simulated strike-slip
event. It is encouraging that the STA/LTA stacking algorithm
is able to detect these events, as well as the ML = 0.0 event
in particular. This event is barely visible on the raw traces
and may well be missed by commonly used automated pick-
ing algorithms that are based on identifying seismic waveform
amplitude changes and even by manual analysis.

However, it is clear that the STA/LTA stacking algorithm
has failed to detect the ML = −0.25 event. Maxima in S’(x)
are found, but their amplitudes are substantially smaller than
the amplitudes of the detected events, and there is more than
one local maxima of similar amplitude. We surmise that these
peaks are produced by the natural variability of the noise that
we have superimposed. We use these observations to set a
threshold for event detection in the following case study: we
consider an event to have been detected when S’(x) > 15. In
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Figure 8 Map and cross-sectional views of the hypocentres of events detected and located by the STA/LTA stacking algorithm. Events are
coloured by occurrence date.

practice, we envisage that an operator will set a threshold such
that a suitable ratio of event detections versus false positives
is achieved.

4 C A S E S T U D Y

4.1 Description of monitoring site

Having demonstrated our method using a synthetic dataset,
we now assess its performance monitoring a real-case study
recorded during a multi-well, multi-stage hydraulic fracturing
treatment in Oklahoma. The operations were monitored with
an array of 17 three-component broadband Güralp CMG-
3TD seismometers buried by hand to a depth of approximately
60 cm. The array geometry is shown in Fig. 5. The track of
one of the horizontal wells is shown in this figure. The track
of the second well was not made available to us by the oper-
ator, but it runs in the same direction adjacent to the marked
well.

In this study, two horizontal wells were fractured sequen-
tially over multiple stages. Monitoring was conducted contin-
uously for 8 days. The target interval for the stimulation was

at a depth of approximately 3.8 km. Detailed engineering data
(pumping times, rates, and pressures) were not made available
to us by the operator.

4.2 Events detected using individual-trace automated phase
picking methods

Prior to this study, the recorded data had been examined us-
ing commonly used seismological methods, where a triggering
algorithm is used to identify potential event candidates, and
travel-time picks are then inverted for event locations (e.g.,
Baptie 2012). Potential triggers were identified at each sta-
tion using the FilterPicker automated picking algorithm de-
scribed by Lomax et al. (2012) using the parameters listed in
Table 2. FilterPicker is a commonly used automatic picking al-
gorithm (e.g. Satriano et al. 2011; Utheim et al. 2014). Events
were identified when triggers occurred simultaneously (within
3 seconds) on at least four stations. For these events, P– and
S–wave arrivals were manually re-picked, and the phase ar-
rival times were inverted for event locations.

The velocity model used to locate event is listed in
Table 3. This velocity model was based on geophysical
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Figure 9 Slices through the volume of stack power (S’(x)) for an event with (a) good signal-to-noise ratio (i.e., detected by the conventional
automated picking algorithm) and (b) weak signal-to-noise (i.e., undetected by the automated picking algorithm). The waveforms of the large
event are shown in Fig. 6 and of the small event in Fig. 10.

Figure 10 Example event detected by the STA/LTA stacking algorithm but missed by the automated picking algorithm (in the same format as
in Fig. 2). The event is barely visible above the noise levels. Data have been band-pass filtered between 1 Hz and 50 Hz.

data (sonic well logs) provided by the site operator. These
data did not contain any information about anisotropy,
and we found that, in this case, an isotropic model was
able to produce reasonable event locations with small
residuals between observed and modelled pick times. We
therefore decided to continue with an isotropic model
for this case study. Moment magnitudes were computed

using the method described by Stork, Verdon and Kendall
(2014).

A total of 17 events were identified in this manner.
Figure 6 shows the waveforms from an example event, and
Fig. 7 shows the locations of the detected events. The events
are clustered around the treatment wells and range in magni-
tude from approximately 0.0 < MW < 1.0.
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Figure 11 P–, SH- and SV-wave stacks, and the combined stack S(x) for the best fit event location position for the weak event shown in Fig. 10.
Small peaks in each of the individual phases combine to reveal a clear signal that is well above the noise on the combined trace.

Figure 12 Y-coordinate position for each event as a function of occurrence time. Events move from the toes of the wells (at a position of
approximately Y � 1500m) to the heels of the wells (at Y � 0 m), as expected for a typical hydraulic fracturing treatment program.

4.3 Events detected using short-term/long-term
average stacking

The test for our method is to establish whether it can iden-
tify a larger number of events than detected by the automated

picking algorithm. The parameters used for our search are
listed in Table 4. As a preliminary processing step, the data are
band-pass filtered with corner frequencies of 1–50 Hz. We set
search limits to within a cube of 3.5 km×3.5 km×3 km around
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Figure 13 Mean PGV (over all 17 stations) for (white circles) events detected by the conventional auto-picking algorithm and (grey circles)
events only detected by the stacking algorithm. The stacking algorithm is capable of detecting smaller events that are not identified by the
auto-picking method.

the middle point of the horizontal section of the well. The lat-
eral limits of our search are shown in Fig. 5 and between
2000-m and 5500-m depths. We divide the recorded data into
time windows of τ = 30 seconds, with 5 seconds of over-
lap between each segment. Within each 30-second segment,
we search for candidate event locations. The velocity model
we use is isotropic; hence, in this case, we compute a single
S–wave travel-time table to shift both SH and SV phases. Based
on the synthetic modelling described above, we set an event
detection threshold whenever S’(x) > 15. The event hypocen-
tre is taken as the point x that maximises S’(x).

A total of 155 events were detected and located over
the 8-day monitoring period. This includes the 17 events de-
tected using FilterPicker and represents a 900% increase in the
number of events detected. The event locations are plotted in
Fig. 8, coloured by the event occurrence date. Figure 9 shows
slices through the stack power as a function of position for
both a larger event (which was also detected by conventional
picking, as shown in Fig. 6) and a smaller event, which initially
went undetected. The waveforms from this smaller event are
plotted in Fig. 10, and the individual P–, SH–, and SV–wave
stacks (together with the combined stack) for this weak event
are shown in Fig. 11.

In Fig. 8, we note that event locations migrate from the
toe to the heel of the well with time. This behaviour is shown
more explicitly in Fig. 12, which shows the Y-coordinate po-
sition of each event. We note two features from the figure.
First, the events are clustered in time, with burst of events in-
terspersed with quiescent periods. Unfortunately, the pumping

and engineering data for these wells are not available to us.
Nevertheless, it seems likely that each burst of events corre-
sponds to a fracturing stage in one of the wells, with seismicity
being triggered during pumping and subsiding once pumping
ceases.

Second, the progression of events from the toe to the
heel of each well is immediately apparent. Normal hydraulic
fracturing practice is to begin fracturing at the toe of each well,
moving towards the heel of the well with each stage. In this
case, the event positions track this behaviour, beginning at the
toe of the first well and moving to the heel, before switching to
the toe of the second well, and again moving towards the heel.

Because we do not have any engineering data from these
operations, it is not possible to conduct any further analy-
sis as to the implications of these events for the success (or
otherwise) of the particular stimulation program. However,
the fact that the timing and locations of the detected events
are as expected, assuming a typical stimulation program, is
encouraging as it provides further evidence that (i) the identi-
fied events are bona-fide low-signal-to-noise earthquakes and
not artefacts co-incidentally generated by seismic noise and
(ii) the event locations are sufficiently accurate to pick up the
movement of the hydraulic fracture stages along the well.

4.4 Event sizes

In Fig. 13, we plot the mean peak ground velocity (PGV)
amplitudes (mean over all stations for each event) for these
events, based on windows around the anticipated S–wave
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arrival times. In some cases, no clear S–wave arrival is vis-
ible above the noise levels on individual traces (as shown in
Fig. 10). Therefore, the PGV in these cases is probably an
overestimate because the measured value within some S–wave
windows may in fact just be noise with a higher amplitude
than the signal. The events detected by both the picking algo-
rithm and by the stacking approach (white circles in Fig. 13)
are generally the largest events in each stage, whereas those
detected by the stacking algorithm only are generally smaller.

In the case study we have presented, we have examined
PGV for events rather than computing event magnitudes. This
is an intentional choice because, as discussed above, for the
smaller events detected by the stacking algorithm, the am-
plitudes of phase arrivals on individual traces are similar
to or sometimes below the noise levels. Stork et al. (2014)
investigate the robustness of magnitude estimates for small-
magnitude events and recommend that accurate magnitudes
can only be calculated for events where the signal-to-noise
ratio is 3 or greater. For most of the smaller events detected
by the stacking algorithm, this criterion is not met; hence, we
have not attempted to determine magnitudes for these smaller
events since they would be subject to substantial error. While
it is possible to compute event magnitudes based on stacked
waveforms, in our experience, magnitudes estimated via this
type of approach may not be particularly robust.

5 C ONCLUSIONS

In order to detect and identify induced seismic events at in-
dustrial sites such as shale gas extraction wells, operators are
increasingly using small, sparse arrays of surface seismome-
ters. Such arrays have the advantage of cheapness and ease of
deployment over the downhole arrays and/or dense surface ar-
rays commonly used to image microseismic activity. To max-
imise the information that can be gained from these arrays,
the detection thresholds must be minimised. This can be chal-
lenging in high-noise environments that often exist around
industrial sites.

To improve detection thresholds of small, sparse, surface
arrays, we develop and test a method that uses beamform-
ing and stacking of characteristic functions based on short-
term/long-term average (STA/LTA) ratios to detect events that
have signal-to-noise ratios close to 1. In this paper, we apply
this approach to data recorded during hydraulic fracturing of
a well in Oklahoma. Our aim was to compare the performance
of this approach to typically used event detection algorithms
that rely on automated phase picking on individual traces.

We find that, by using this beamforming-and-stacking
approach, we were able to substantially increase the number of
events detected. Where a conventional picking algorithm was
only able to detect 17 events during the monitoring period,
the beamforming-and-stacking approach was able to detect
155 events. Generally speaking, the signal-to-noise ratio of
these additional events was close to 1, and they could easily
have been missed even by manual analysis of the recorded
waveforms.

The hypocentres of the detected events are close to the
wellbore and follow a pattern expected for a typical hydraulic
stimulation program. The events occur in bursts, followed
by quiescent periods, which we infer that they correlate to
the hydraulic fracturing stages (although we do not have the
pumping data available to confirm this), and with each stage,
move from the toe to the heel of the well.

We conclude that the STA/LTA stacking algorithm has
been successful in detecting small-magnitude events that could
not be detected with more conventional methods and that,
in addition these, small events have been accurately lo-
cated. We recommend that algorithms of this nature be
used at future industrial sites to maximise the information
that can be provided by small, sparse, surface seismometer
arrays.
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