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We develop a model for the dynamics of a reactive gravity-driven flow in a porous
layer of finite depth, accounting for the change in permeability and density across the
dissolution front. We identify that the two controlling parameters are the mobility
ratio across the reaction front and the ratio of the buoyancy-driven flow to the
fluid injection rate. We present some numerical solutions for the evolution of a
two-dimensional dissolution front, and develop an approximate analytic solution for
the limit of large injection rate compared to the buoyancy-driven flow. The model
predictions are compared with some new analogue laboratory experiments in which
fresh water displaces a saturated aqueous solution initially confined within a two-
dimensional reactive permeable matrix composed of salt powder and glass ballotini.
We also present self-similar solutions for an axisymmetric gravity-driven reactive
current moving through a porous layer of finite depth. The solutions illustrate how the
reaction front becomes progressively wider as the ratio of the buoyancy-driven flow to
the injection rate increases, and also as the mobility contrast across the front increases.

1. Introduction
Many natural and industrial processes involve the flow of reactive fluids through

permeable rock (Phillips 1991; Liu et al. 1997). The dynamics and instabilities of such
reaction fronts in pressure-driven flow have been studied in detail, especially owing
to their interest in the dissolution of mineral precipitate near oil wells (Ortoleva et al.
1987; Liu et al. 1997; Chen et al. 1997). Often the reaction fronts can become unstable
leading to the formation of a highly fingered interface, and ultimately the formation
of dissolution channels or wormholes (Daccord, Lenormand & Lietarel 1993a, b;
Golfier et al. 2002; Fredd & Fogler 1999). However, in many natural situations,
buoyancy contrasts may play a key role in the dynamics as fluid spreads through
confined permeable strata (Barenblatt 1996; Nigam & Woods 2006). If an advancing
gravity-driven flow reacts with the rock, leading to partial dissolution, then there will
be an increase in permeability behind the reaction front, which in turn can have a
dynamic feedback on the flow. Examples of such flow may arise if fresh water is
injected into a saline aquifer for storage (Bear 1972; Mitchell & Woods 2006), or
if cold surface water is injected into a geothermal reservoir to mine additional heat
(Woods 1999; Menand, Raw & Woods 2002; Jupp & Woods 2003, 2004). In both
cases, the injected water may be unsaturated in minerals present in the rock. Recently,
interest has also focused on the injection of CO2 into saline aquifers as part of the
process of CO2 sequestration (Lagneau, Pipart & Catalette 2005; Nordbotten & Celia
2006). At the high pressures of deep saline aquifers, CO2 is in supercritical form, and
as it migrates through an aquifer, displacing water, it will mix with residual water in
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the pore spaces. This juxtaposition of CO2 and H2O may generate fluids which are
highly reactive with carbonate minerals if the pH of the reactive fluid remains low. In
this case, the associated dissolution reactions may increase the permeability by factors
of 10–100 (Grigg, McPherson & Svec 2003). Note however, that in non-carbonate
rocks, reaction rates may be much slower, and the kinetics of dissolution may become
the rate-limiting control on any fluid–rock reactions (e.g. Lagneau et al. 2005).

The purpose of this work is to explore the feedback of such reactions on the
gravity-driven flow of a liquid through a confined permeable rock. We focus on the
idealized situation in which an unsaturated aqueous solution is injected into a confined
horizontal aquifer. We assume the aquifer is initially filled with saturated aqueous
solution, and we consider the case in which a small fraction of the solid porous
matrix, for example the intergrain cement, is soluble in the fluid (Phillips 1991). We
develop a simple analogue laboratory model of this situation using aqueous solutions
moving through a porous medium composed of glass ballotini and a small mass of
salt powder. As the unsaturated fluid moves through the pore spaces, a dissolution
front develops across which that fraction of the matrix which is soluble dissolves into
the fluid (Phillips 1991; Jupp & Woods 2003). If the time for reaction is fast compared
to the time for the fluid to move through the pores, as is the case with some highly
reactive carbonate minerals (Golfier et al. 2002) and also in our experiments, then the
front will be localized (Phillips 1991), and we consider this limit herein. For simplicity,
as in our experiments, we also assume that the reacted fluid ahead of the front is
of comparable density with the original fluid in the porous matrix, and of greater
density than the unreacted injected liquid advancing towards the reaction front.

Earlier studies have examined the motion of gravity-driven reaction fronts in
unconfined permeable layers (Raw & Woods 2003). Here we show that when the
layer has a finite depth, the motion of the original fluid is key because as the reaction
front develops it intersects both the upper and lower boundary of the permeable layer,
thereby displacing the original fluid. We first present an analysis of a two-dimensional
flow, corresponding to injection of fluid from a horizontal well into a confined
permeable layer (figure 1a). The model equations are analogous to the classical model
for fluid–fluid displacement in a porous layer (cf. Bear 1972), although it has a different
interpretation in the present context of a gravity-driven reaction front. We compare
the model predictions to the results of our new analogue laboratory experiments. We
then extend the analysis to consider the flow spreading from a vertical injection well,
which can lead to an axisymmetric reaction front spreading around the well. In this
latter situation, we develop some new similarity solutions for the shape of the reaction
front, following the approach of Nordbotten & Celia (2006) and Mitchell & Woods
(2006). We conclude with a short discussion of some of the implications of our results.

2. Model of the flow in a reactive confined aquifer
The motion of a gravity-driven reaction front can be modelled using Darcy’s law for

flow in a porous medium, combined with a relation for conservation of salt across the
reaction front (Phillips 1991). The schematic in figure 1(a) illustrates the morphology
of the current, and the variables used in our model. As the current spreads out under
the upper surface of the aquifer, y = H , we assume that the vertical velocity is small
compared to the horizontal velocity and so the vertical pressure gradient is close to
hydrostatic (Barenblatt 1996)

P (x, y, t) = p(x, t) − ρgy for 0 < y < h (1a)
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Figure 1. (a) Schematic of the two-dimensional flow geometry, illustrating the reaction front
and the fluid–fluid front. (b) Cartoon to illustrate the conservation of salt across the reaction
front.

and

P (x, y, t) = p(x, t) − ρgy + �ρg(y − h) for h < y < H. (1b)

Here p(x, t) is the pressure on the lower boundary of the aquifer, h is the height of
the reaction front above the lower boundary of the aquifer, and �ρ is the density
contrast between the saturated fluid ahead of the front and the unsaturated fluid
behind the front. Combining this pressure distribution with Darcy’s Law for the flow
leads to expressions for the Darcy velocity in the zone of unreacted fluid behind the
reaction front,

uu = − ku

µu

[
∂p

∂x
− �ρg

∂h

∂x

]
for H > y > h, (2a)

and the zone of reacted or salt saturated fluid ahead of the reaction front

ul = − kl

µl

∂p

∂x
for h > y > 0. (2b)

Here u denotes Darcy velocity, H is the thickness of the aquifer, µ is the fluid
viscosity, φ the porosity and k the permeability. Subscripts u and l denote the upper,
unreacted zone of fluid (y >h) behind the reaction front and the lower, reacted zone
of saturated fluid (y <h) ahead of the reaction front.

We now combine these relations with an expression for the conservation of salt (or
other soluble mineral) across the reaction front to establish a relation between the
speed of the reaction front and the fluid (figure 1b). First, we assume there is a volume
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of salt ε � 1, per unit volume of the rock, which is soluble in the liquid, so that prior
to the reaction, the solid volume fraction is 1 − φ and after reaction, the solid volume
fraction is 1 − φ − ε. We denote the salt density as S, and assume the salt dissolved in
the aqueous solution has a mass per unit volume C in the unsaturated (upper layer)
and Cs in the saturated (lower layer) fluid. The speed of the reaction front, v, may
then be found by analysis of the conservation of salt in the injected fluid. Essentially
at time t , a mass Mi = uCt of salt has been injected from the source, while the mass
of salt in solution in the injected fluid is Ms =(φ + ε)vCt + (u − (φ + ε)v)tCs . The
difference between these quantities, Ms − Mi = (u − (φ + ε)v)(Cs − C)t represents the
mass of salt that has been dissolved from the solid matrix. By equating this with a
direct expression for the mass of salt dissolved from the rock, εvSt , we deduce that

v =
u(Cs − C)

(εS + (φ + ε)(Cs − C))
= λu. (3)

It is also relevant to note that, in this model, the fluid injected into the rock extends
a distance (u − εv)t/φ from the source, and the original fluid lies ahead of this point.
In the present application, we are concerned with the case in which ε � 1 so that
there is little change in the porosity associated with the dissolution. However, the
permeability may change more significantly if the salt which dissolves originally fills
part of the throats between the pores.

To calculate the shape of the current, we now adopt the extended Boussinesq
approximation, in which we neglect changes in density of the liquid except in the
buoyancy forces and we neglect changes in the porosity across the reaction front,
except its impact on the permeability (cf. Phillips 1991). Then, for a long and thin
gravity-driven flow, the depth of the reacted zone above the reaction front, H − h,
increases if the volume flux of unsaturated fluid decreases with distance from the
source, according to the relation

∂(H − h)

∂t
= −λ

∂

∂x
[(H − h)uu]. (4)

In the case of continuous steady injection, the total flow rate per unit width of the
aquifer or experimental cell is given by

Q = (H − h)uu + hul (5)

and is constant. For constant flow, the above relations may be combined to form one
governing equation for the dimensionless thickness of the reacted rock

H = 1 − h/H (6)

as a function of dimensionless position ζ = x/H and dimensionless time τ = tQλβ/H 2

(cf. Bear 1972):

∂H
∂τ

+
∂

∂ζ

[
H

1 + (β − 1)H

]
= B

∂

∂ζ

[
H(1 − H)

1 + (β − 1)H
∂H
∂ζ

]
(7)

where the dimensionless parameter B denotes the ratio of the gravity-driven flow and
a uniform flow associated with the injection at rate Q per unit length,

B = �ρgHkl/µlQ, (8)

and β is the dimensionless change in mobility across the reaction front,

β = µlku/klµu. (9)
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Typically β > 1 in a dissolution reaction. In an industrial context, injection rates may
typically lie in the range 0.01 − 0.1m3 s−1 in a horizontal well of lateral extent 1000 m.
For rocks of permeability 10−12–10−14 m2 and thickness H ∼ 100 m, with �ρ = 0.1 −
0.01ρ and µl ∼ 0.001 Pa s then B has values in the range 10−6–1.0, suggesting that
the effects of gravity are small but non-negligible, especially in the deeper or more
permeable layers.

In the limit B → 0, equation (7) has an analytical solution for the depth of the
reacted zone of rock given by H(ζ, τ ),

H =
1

β − 1

[(
τ − τo

ζ − ζo

)1/2

− 1

]
for

τ − τo

β2
< ζ − ζo < τ − τo (10)

while H = 1 for ζ − ζo < (τ − τo)/β
2 and H = 0 for ζ − ζo > τ − τo. In (10), H

represents the depth of the reacted zone at a distance ζ = ζo+(τ − τo)/(1 + (β − 1)H)2

downstream at time τ , given that the depth was H at the position ζo at time τo.
Note that equation (7) is analogous to the equation governing the average

concentration of the fluid mixture when one fluid displaces a second miscible fluid
of smaller mobility within a confined aquifer (e.g. Bear 1972; Yortsos & Salin 2006).
In that different problem, the interface between the fluids becomes highly tortuous as
fingers of the high-mobility fluid invade the low-mobility fluid. The fingered zone can
be described in terms of the cross-aquifer-averaged concentration of the high-mobility
fluid. The solution analogous to equation (10) then describes this mixed zone, in the
limit of high Péclet number and hence negligible diffusivity. However, in contrast
to the present gravity-controlled intrusion in which H describes the depth of the
reacted zone at the top of the aquifer, with a miscible pressure-driven displacement,
the fingers of the high-mobility fluid penetrate the low-mobility fluid on a range of
length scales, across the whole interface. Comparison with experiments shows that
in that context, the solution of the form of equation (10) overpredicts the rate of
spreading of the mixed zone (Yortsos & Salin 2006). This is a result of the neglect of
the cross-finger diffusion, which, in fact, acts to smear the interface between the two
fluids, thereby changing the effective mobility of the fluid in the mixed zone.

However such a pressure-driven miscible displacement is somewhat different to the
present problem in which (7) describes the advance of a reaction front as observed
in our experiments (see the next section), and in which the change in mobility is
associated with the change in the permeability of the matrix as well as any change in
viscosity associated with the changing concentration of the fluid across the reaction
front. The main point of contact of our problem with this earlier work is that in
the limit of purely pressure-driven flow, corresponding to B = 0, the reaction front
could in principle become unstable and highly tortuous (cf. Golfier et al. 2002). In
that case, as the length scales of the fingers normal to the reaction front decrease,
cross-front diffusion of solute could then smear the reaction front. However, in our
experiments, we focus on the case with B ∼ O(1), in which there is a well-defined,
gravity-controlled reaction front which becomes progressively thinner with distance
from the source (figure 1a). In this case, cross-front diffusion is unlikely to be
important except in very thin aquifers or once the flow has spread a very large
distance, L, given by the scaling L ∼ H 2u/D ∼ 107 m where D is the solutal diffusivity,
of order 10−9 m2 s−1, for a typical flow speed of order u ∼ 10−6 m s−1.

Instead, in the present context, the solution given by equation (10) provides a
reference as the theoretical limit in which there is no gravitational force and hence for
which the leading edge of the reaction front spreads more slowly than with B =O(1).
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Figure 2. Illustration of the change in shape of the reaction front as a function of the
parameter B , which measures the gravitational forces compared to the viscous resistance
associated with the applied flow rate. The analytical solution (B = 0) is shown for comparison.

For example, in figure 2, we show numerical solutions of equation (7) for a range of
values of B . These numerical solutions, calculated using a finite-difference formulation
of equation (7) (Ames 1977), are shown at the same dimensionless time as for the
analytical solution (10). For this comparison, we chose the initial reaction front to be
close to vertical, H(ζo, 0) = 1 − ζo/ζr for 0 <ζo < ζr , with ζr = 0.1. It is seen that (10)
provides a good approximation for the numerical predictions of the position of the
reaction front when B � 1. However, as B increases, the importance of gravitational
spreading also increases, and the nose of the current propagates even further from
the source.

The limiting solution given by equation (10) also identifies that at long times, as
the influence of the initial conditions diminishes, the nose of the reaction front has
position ζ ∼ τ which corresponds to the dimensional value x ∼ Qλβ/Ht . This is a
factor β larger than the theoretical distance a stable vertical reaction front would
propagate. Noting the caveats about any cross-front diffusion (cf. Yortsos & Salin
2006), the solution illustrates the impact of the change in permeability and hence
mobility, β(> 1), across the reaction front on the lateral extent of the reaction zone.

3. Experimental model of a gravity-driven reaction front
To test the dissolution model, as distilled into the governing equation (7), we

developed an analogue experimental system, in which we filled a small sealed Perspex
cell with a mixture of glass ballotini, of diameter 100 micron, and salt powder. We
used two cells, a short cell of dimensions 60 cm long × 10 cm high × 1 cm wide and
a longer cell of dimensions 200 cm long × 10 cm high × 1 cm wide; the shorter cell
was useful for initial visualization experiments, but the longer cell allowed us to
compare the model with very long currents, up to 200 cm in lateral extent. In the
experiments, we used very small mass fractions of salt in the range 0.05–0.1 of the
total mass of matrix, so that the change in porosity associated with any dissolution
is small. We used water as the working fluid so that the salt powder would dissolve,
thereby increasing the porosity of the matrix by 2 %–5 %. This increase in porosity
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is sufficient to produce a large change in the permeability of the matrix and hence
the mobility of the fluid, but is sufficiently small that there is little compaction of the
grains. Independent measurements of the mobility, before and after the reaction, were
carried out in a calibration experiment. In the calibration experiment, the dry cell was
filled with a mixture of glass ballotini and salt powder. The cell was then sealed and
filled with saturated aqueous solution using the inflow/outflow vents at the two ends.
In the first experiment, the cell was placed with the long axis vertical, and saturated
aqueous solution was supplied to the top end of the cell from a source reservoir of
known pressure. The fluid then migrated down through the cell and issued from the
other end. The rate of outflow was measured to estimate the flow rate through the cell.
In a second calibration experiment, the aqueous solution in the source reservoir was
replaced with fresh water with the same source pressure. As the fresh water invaded
the cell from above, a horizontal reaction front formed. The front remained stable
owing to the relatively large change in density of the fluid across the front, and the
front migrated slowly downwards through the reactive matrix. Once the reaction front
had passed through the cell, the flow rate was again measured for a given pressure
head driving the flow. Typical measurements of the two flow rates indicated a change
in mobility across the horizontal reaction front by a factor β ∼ 1.9 ± 0.2. This value
includes the effects of both a change in viscosity of the solution with salinity and also
a change in permeability of the matrix as the salt is dissolved.

Prior to each reactive gravity current experiment, the cell was placed with the long
axis horizontal and the intermediate axis vertical (figure 3a), filled with ballotini and
salt powder, and then flooded with saturated saline solution. An inflow pipe connected
to the upper part of one vertical endwall of the cell was then connected to a fresh
water reservoir via a peristaltic pump. An outflow pipe at the other end of the cell
allowed fluid to leave in response to the input from the pump. As water is pumped
into the cell, the fresh water displaces the original saline water. Since it is buoyant,
the fresh water tends to run through the upper part of the cell adjacent to the top
boundary. The leading edge of the injected water is visualized by dying the injected
water.

In the experiments, we observed that the fluid–fluid front is followed by a sharp
reaction front, across which the salt powder originally in the cell dissolves into the
fresh water. In the region behind the reaction front, there appears to be no salt in
the matrix. Point measurements of the salinity of the fluid in the cell were taken by
withdrawing small samples of the fluid through a series of small holes in the wall and
into a syringe. These indicated a decrease in the salinity of the fluid, from saturated
solution to pure water, as the reaction front passed by. Figure 3(b) shows a series of
four photographs illustrating the time evolution of one typical experimental flow in
the shorter experimental apparatus. The photographs were taken at times 208, 424,
670 and 850 s after the start of the experiment in which the flow rate was 0.26 m3 s−1.
To help visualize the flow pattern, and the reaction front, the injected liquid is dyed
and the colour of the dye is changed at various times. For the low flow rates used
in the laboratory, the dissolution of salt appears to occur in a narrow zone around
a well-defined reaction front. The reaction front is identified as a narrow interface
region, <1–2 mm thick, across which there is a distinct change in light intensity,
within the zone of injected liquid. This lies some distance behind the fluid–fluid front
between the clear original interstitial fluid and the injected blue fluid.

The dye shows how the liquid migrates across the reaction front with time. The
injected water is initially dyed blue, but this is changed to red at a later time in the
experiment. Careful observation of the flow suggests that the most recently injected
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Figure 3. (a) Schematic of the experimental system. (b) Series of four photographs taken at
times 208 s, 424 s, 670 s and 850 s, to illustrate the evolution of the reaction front and the
motion of the fluid through the reacting porous cell. This experiment was conducted in the
shorter experimental cell, and had a flow rate of 0.26 mm3 s−1. The absence of fine salt powder
behind the reaction front leads to very clear change in light intensity at the reaction front,
as shown by the arrows. The injected water is initially dyed blue, but this is changed to red
later in the experiment. The dye suggests that the most recently injected fluid spreads rapidly
through the reacted zone, and then gradually advances across the reaction front, which thereby
migrates forwards.

fluid spreads rapidly through the reacted zone of higher permeability, and then
gradually advances across the reaction front, which thereby deepens and migrates
forwards. In each experiment, as the flow continued, the reaction zone spread along
the upper side of the cell, dissolving away a channel of high permeability.

In order to compare the model with the experimental results, we have generated a
series of profiles of the reaction front depth as a function of time. One typical set of
results for the long experimental cell, shown as the symbols in figure 4, correspond
to an experiment in which the volume flux of fresh water supplied to the tank was
0.15 m3 s−1, and in which the volume fraction of salt in the porous layer was initially
5%. The reaction front profiles are shown at dimensionless times 6.7, 10.1, 13.5 and
16.9 (see below) corresponding to the actual times 1200, 1800, 2400 and 3000 s after the
start of the experiment. The reaction front extends over 160 cm along the tank by the
time of the fourth profile. In order to compare these experimental observations with
the predictions of the model (7), we require estimates for the values of the parameters
β , B and λ for this experiment. First, based on the calibration experiments, the ratio
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Figure 4. Comparison of the predictions of the theoretical model (solid lines) with labora-
tory measurements (symbols) of the dimensionless location of the reaction front, at the
dimensionless times 6.7, 10.1 13.5 and 16.9 during an experiment. These data were collected
from the long experimental cell with an injection rate of 0.15mm3 s−1. In comparing the model
with the experimental data, we use the values λ= 1.54, B = 2.1, and β ∼ 2.0, estimated from
the input conditions or calibration experiments conducted prior to the main experiment, as
described in the text.

of the fluid mobility in the unreacted and reacted zones was taken to be β =2.0.
Secondly, we estimated that the porosity of the cell was φ ∼ 0.4 and the unreacted
matrix had permeability 1.85 × 10−10 m2. Since the saturated aqueous solution in
equilibrium with the reactive porous layer contained about 25 wt % salt, then we
estimate that B = 2.1. Thirdly, comparison of the area of reacted matrix behind the
reaction front with the volume of injected fluid, as estimated from the experimental
reaction front profiles at the four times (figure 4), suggests that the reaction parameter
λ (equation (3)) has value 1.55 ± 0.05. This is consistent with the model prediction
λ∼ 1.54 based on equation (3). Using the values for the parameters β , B and λ, as
estimated above, we then solved numerically the model equation (7) to calculate the
dimensionless shape of the interface at the dimensionless times 6.75, 10.1, 13.5 and
16.9. The numerical predictions (solid lines) are compared with the observed shape
of the reaction fronts (symbols) at the four times shown in figure 4. It is seen that,
as a leading-order description of the process, the model predictions are in reasonable
agreement with the experimental observations. There are some differences however,
especially at the lower boundary of the cell. These may in part be the result of the
rather simplified model of a localized, stable and well-defined reaction front.

4. Axisymmetric geometry
The modelling and experiments in § § 2 and 3 focused on planar flows, as would

correspond to injection of water into a horizontal well, or the leakage of water from
a fracture cutting through an aquifer. As described in § 2, for constant injection, the
full governing equation requires numerical solution. However, assuming the reaction
front remains stable and spreads axisymmetrically under the upper boundary of the
aquifer, as in the two-dimensional experiments, then there are asymptotic solutions
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in the limit of small B , and these solutions identify the important role of the change
in fluid mobility, β , in the evolution of the reaction front.

In contrast to the horizontal well, if liquid is injected from a vertical well and
spreads axisymmetrically then, for a fixed injection rate, the flow speed decreases with
distance. Now the motion becomes self-similar, as in the somewhat analogous flow
of a confined gravity current (Mitchell & Woods 2006; Nordbotten & Celia 2006).
Such similarity solutions can provide a valuable complement to the one-dimensional
analysis, and we therefore now explore the behaviour of such a gravity-driven,
axisymmetric reaction front.

From a similar derivation to that given in § 2, it follows that for steady injection
through a central vertical well, at flow rate Q, into a confined reacting layer of rock,
the height of the reaction zone above the base of the layer h takes the form (cf.
equation (7))

r
∂(H − h)

∂t
+

βλQ

2πH

∂

∂r

[
H − h

h + (H − h)β

]
= −λku�ρg

µu

∂

∂r

[
h(H − h)r

h + (H − h)β

∂h

∂r

]
. (11)

This equation admits solutions of the form h = H (1 − F(η)) where

η = r

(
2πH

λβQt

)1/2

(12)

and F, the dimensionless depth of the reacted zone, satisifies the ordinary differential
equation

[(
1

1 + (β − 1)F

)2

− η2

2

]
dF
dη

= Br

d

dη

[
ηF(1 − F)

1 + (β − 1)F
dF
dη

]
(13)

where

Br =
2πkl�ρgH 2

µlQ
.

Also, F satisfies the boundary conditions that at the outer edge of the reaction front,
where η = λ2, then F(λ2) = 0 and

dF
dη

=
2 − λ2

2

2Brλ2

. (14)

At the inner edge of the reaction front, where η = λ1, then F(λ1) = 1 and

dF
dη

=
β2λ2

1 − 2

2Brλ1β
. (15)

This latter condition requires that λ1 < 21/2/β . Again, there are two control parameters
for the flow, Br and β . In figure 5, we present a range of solutions for the shape of
the reaction front as a function of Br (figure 5a), and the mobility ratio β (figure 5b).
It may be seen that as Br increases, so that the buoyancy contrast across the reaction
front dominates the radial pressure gradient associated with the flow, then the flow
tends to spread out more rapidly along the upper surface of the layer. Similarly, as
β increases, corresponding to a larger permeability contrast across the reaction front,
the reaction front tends to form a much more focused channel along the top of the
layer.
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Figure 5. Variation of the shape of the self-similar axisymmetric reaction front as a function
of distance from the source for a range of values of (a) Br , the buoyancy parameter, and (b)
β , the mobility ratio across the reaction front.

By analogy with equations (7) and (10), in the limit of relatively weak buoyancy
force, Br → 0, equation (13) has the limiting analytic solution

F =
1

β − 1

(
21/2

η
− 1

)
for

(
21/2

/
β
)

< η < 21/2. (16)

This theoretical solution, which is based on the assumption that the reaction front
remains as a stable intrusion, spreading along the upper boundary of the layer (see
discussion in § 2), illustrates that the leading edge of the reaction front has position
η =21/2 which has dimensional value r = (λβQt/(πH ))1/2. This is a factor β1/2 further
than a purely vertical axisymmetric reaction front would propagate, indicating the
importance of the mobility ratio in dispersing the reaction front. Figure 5(a) illustrates
that with Br > 0 so that the current also spreads under gravity, then the leading edge
of the reaction front advances even more rapidly from the source. It is interesting
to compare this result with the two-dimensional case (§ 2), in which the theoretical
solution (10) suggests that the current would advance a factor β further than the
purely vertical front (in the limit B → 0).

5. Discussion
We have investigated both experimentally and theoretically the effect of a

dissolution reaction on the propagation of a buoyant reactive fluid through a confined
porous rock. Our simplified analytical model provides new insight into the controls
on the rate of propagation of gravity-controlled reaction fronts, and is in reasonable
accord with our experimental results. The model identifies how the increase of the
permeability of the matrix as a result of the reaction can increase the mobility and
hence the spreading rate of the buoyant reactive fluid and the reaction front. It also
illustrates how the buoyancy force arising from a change in fluid density across the re-
action front acts to disperse the reactive fluid and hence the leading edge of the
reaction front even further. The reaction may therefore substantially enhance the
lateral spreading of the injected liquid, and can lead to dissolution of a relatively fine
and laterally extensive channel through the rock.
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Given the uncertainties in highly complex geological systems, simplified quantitative
models such as that proposed herein provide valuable constraints for interpreting the
processes leading to the formation of very extensive mineral reaction zones associated
with fluid flow. Examples of such reaction zones include those observed in carbonates
and other reactive geological deposits (Liu et al. 1997; Phillips 1991). Data from
laboratory experiments on reactions in rock suggest that the mobility ratio across
a reaction front may have a value as large as 10–100 (Grigg et al. 2003). Even
with axisymmetric flow, this may then lead to the reaction front and the fluid being
dispersed a factor 3–10 times further than if we assume the reaction front is vertical,
and perhaps as much as 100 times further in an axisymmetric flow. Such dynamic
dispersion can help to rationalize the very significant lateral extent of some reaction
zones in some carbonate rocks (Phillips 1991), which would not be possible through
purely diffusive transport of reactants.

However, several caveats should be noted concerning the present modelling. First,
it should be noted that the heterogeneity of real rock formations may be responsible
for some of the dispersion of a reaction front in real rocks, and this can affect
the spreading rate of the front. Also, in the present modelling, we have assumed
that the reaction front remains stable and well-defined, as observed in our analogue
experiments. However, pressure-driven dissolution fronts in reactive porous media
can become unstable (Ortoleva et al. 1987), leading to intricate fingering and worm-
hole formation (e.g. Golfier et al. 2002); such phenomena are beyond the scope
of the present work, in which the buoyancy of the reactive fluid leads to a stable
advancing reaction front (figures 1, 3b), but such effects are likely to arise when
the buoyancy parameter B is small, as occurs if either (i) the flow rate increases or
(ii) the buoyancy of the reactive fluid decreases (equation (8)). We plan to explore
this different reaction regime, and its dependence on B and β in more detail, both
experimentally and theoretically. In particular, it will be interesting to explore whether
the much smaller cross-front length scales associated with a fingering interface leads
to diffusive mixing and a reduction in the rate of propagation of the reaction zone,
as implied by the recent analysis of Yortsos & Salin (2006).

This work has been supported by the BP Institute in University of Cambridge. The
paper was greatly improved by a series of very helpful referees reports.
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