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Supplemental Material

Induced seismicity magnitudemodels seek to forecast upcomingmagnitudes of induced
earthquakes during the operation of subsurface industries such as hydraulic fracturing,
geothermal stimulation, wastewater disposal (WWD), and carbon capture and storage.
Accurate forecasting models could guide operational decision making in real time; for
example, operations could be reduced or paused if forecast models indicate that mag-
nitudes may exceed acceptable levels. Robust and transparent testing of forecasting
models is required if they are to be adopted by operators and regulators of such indus-
tries. We develop and test a suite of models based on extreme value estimators to fore-
cast the magnitudes of upcoming induced seismic events based on observed seismicity.
We apply these models to multiple induced seismicity cases from WWD in Oklahoma
and in western Texas, as well as other cases of seismicity caused by subsurface fluid
injection in North America, Europe, and China. In total, our testing dataset consists
of > 80 individual sequences of induced seismicity. We find that all the models produce
strong correlation between observed and modeled magnitudes, indicating that the
forecasting provides useful information about upcoming magnitudes. However, some
models are found to systematically overpredict the observed magnitudes, whereas
others tend to underpredict. As such, the combined suite of models can be used to
define upper and lower estimators for the expected magnitudes of upcoming events,
as well as empirically constrained statistical expectations for how thesemagnitudeswill
be distributed between the upper and lower values. We conclude by demonstrating
how our empirically constrained distribution can be used to produce probabilistic fore-
casts of upcoming induced earthquake magnitudes, applying this approach to two
recent cases of induced seismicity.

Introduction
Cases of induced seismicity have grown rapidly over the past
two decades, associated with the growth and expansion of
oilfield technologies such as hydraulic fracturing, wastewater
disposal (WWD), and natural gas storage (NGS). Emerging
low-carbon energy technologies such as geothermal and car-
bon capture and storage, which entail the injection of fluids
into the subsurface, also carry the potential to generate induced
seismicity.

In severe cases, induced seismicity has caused damage to
nearby buildings and infrastructure, as well as injuries to nearby
people (e.g., Lee et al., 2019; Lei et al., 2019; Campbell et al.,
2020). Even when induced event magnitudes are insufficient
to cause damage, they are nevertheless a source of public con-
cern (e.g., Evensen et al., 2022). A failure to adequately manage
induced seismicity during development of subsurface geo-
energy projects has led to the cancellation of individual projects

and sites and limits or moratoria being imposed on entire
industries. The need to develop methods to quantify induced
seismicity hazard during operations, primarily by estimating
what magnitudes of earthquakes are likely to be generated,
is clear.

Our aim in this study is to forecast the growth in earthquake
magnitudes as induced seismicity sequences develop. We do this
by tracking the magnitudes of new record-breaking events—
events that are larger than any previous event within a sequence.
Hereafter we refer to these record-breaking magnitudes as
MNRB. The growth of record-breaking events is of particular
importance to operators and regulators of subsurface industries
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because their magnitudes usually determine the largest ground
motions that are generated and therefore the largest impact to
nearby buildings, infrastructure, and people. If we are able to
accurately forecast upcoming record-breaking magnitudes
(and preferably, a probability distribution thereof), this could
enable operators to make decisions to ensure the safety of their
activities by, for example, reducing, ceasing, or applying other
mitigation actions to their operations if it becomes likely that
unacceptably high magnitudes will be generated.

Observed versus physically possible induced
seismicity magnitudes
The largest record-breaking event within an induced seismicity
sequence is, by definition, the largest event within that
sequence. The largest observed magnitude during a sequence
of induced seismicity (or a forecast thereof) is commonly
referred to as MMAX (e.g., Hallo et al., 2014; van der Elst
et al., 2016; Eaton and Igonin, 2018; Verdon and Bommer,
2021). This is different from the MMAX parameter used in tec-
tonic seismic hazard assessment, for which it denotes the larg-
est magnitude earthquake that is physically possible given the
particular tectonic circumstances in question (e.g., Mueller,
2010). The largest possible magnitude represents a truncation
to the Gutenberg and Richter (1944) magnitude–frequency
distribution (G-R hereafter). We refer to this truncation mag-
nitude as MT

MAX to differentiate these terms.
In making this distinction, we recognize that there is a fun-

damental difference between tectonic and induced seismicity
(Bommer and Verdon, 2024). Tectonic seismicity is driven
by processes acting over geological timescales. Theoretically,
all tectonic earthquake populations will eventually be truncated
atMT

MAX if we are only able to wait for long enough observation
times. In contrast, induced seismicity is driven by a human-
induced perturbation that is of limited spatial extent and tem-
poral duration. We are therefore able to observe induced
sequences in their entirety, from start to finish. The largest
induced event that actually occurs (MMAX) will probably not
correspond to the largest possible event at which the G-R
distribution would truncate (MT

MAX) unless a sufficient number
of induced events have been generated (van der Elst et al., 2016;
Zöller and Holschneider, 2016; Eaton and Igonin, 2018).

There are some cases of induced seismicity, usually in set-
tings with fairly specific and unique geomechanical conditions,
for which truncations of the G-R distribution have been
observed (e.g., Verdon et al., 2018). However, for most sequen-
ces of induced seismicity, there has been little robust evidence
of truncations to the G-R distribution at high magnitudes,
as would be observed if MT

MAX were regularly being reached
(e.g., van der Elst et al., 2016; Watkins et al., 2023). It is there-
fore reasonable in most cases to treat the magnitudes of an
ongoing induced seismicity sequence as being drawn from
an unbounded G-R distribution unless specific evidence to
the contrary is available.

Furthermore, the accumulation of tectonic strain that drives
tectonic earthquakes is assumed to be relatively constant (with
respect to the timescales of our observations). In contrast, the
human-made perturbations that drive induced seismicity may
quickly increase in scale and spatial extent during operations,
for example, as injection continues in a given well. As a result,
induced seismicity sequences may be expected to grow as injec-
tion progresses.

Although van der Elst et al. (2016) suggested that the order
in which induced earthquakes occur is random, subsequent
analyses of induced seismicity sequences have shown evidence
for progression of event magnitudes as sequences have grown
(e.g., Skoumal et al., 2018; Verdon and Bommer, 2021;
Watkins et al., 2023). Whereas estimates of the maximum pos-
sible magnitudeMT

MAX should be constant because this param-
eter is controlled by underlying physical conditions (e.g., the
size and frictional properties of nearby faults), forecasts of
MMAX during induced seismicity may be time dependent
because we should expect a different maximum magnitude
event to occur if, for example, we were to inject a given volume
of fluid for only one month versus injecting the same volume of
fluid every month for a period of years.

Forecasting-induced seismicity magnitudes
A range of methods to forecast magnitudes during induced
seismicity sequences have been developed. One approach is
to use numerical geomechanical simulations of subsurface
processes (e.g., Rutqvist et al., 2013; Verdon et al., 2015;
Dempsey and Suckale, 2017). However, such modeling is often
difficult to apply in practice because a detailed characterization
of the subsurface is required to generate a model. For
many cases, the causative faults on which induced seismicity
occurred were not visible in geophysical surveys acquired prior
to the onset of industrial activities (e.g., Eaton et al., 2018;
Cesca et al., 2021; Nantanoi et al., 2022). Even where faults
are successfully imaged, quantification of their mechanical
and frictional properties, as required for accurate numerical
geomechanical modeling, can be challenging.

The alternative to physics-based numerical modeling is to
use statistics-based approaches. For these methods, the
observed population of seismic events is characterized sta-
tistically, and the statistical models are then used to make fore-
casts of the ongoing seismicity. A commonly used approach is
to characterize a relationship between the rate of seismicity and
the volume of fluids injected into (or removed from) the sub-
surface at an early stage of operations (e.g., McGarr, 1976,
Shapiro et al., 2010; Hallo et al., 2014; Mancini et al., 2021).
The future seismicity can then be forecast by extrapolating this
relationship to a future planned injection (or production) vol-
ume. This approach has been used to forecast seismicity and
guide decision making for several notable cases of induced seis-
micity, including the Helsinki St1 Deep Heat project (Kwiatek
et al., 2019); the Weyburn Carbon Capture and Storage Project
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(Verdon, 2016); and during hydraulic fracturing of the Preston
New Road (PNR) shale gas wells in Lancashire, United
Kingdom (Clarke et al., 2019; Kettlety et al., 2021). Verdon
et al. (2024) published a comprehensive appraisal of the per-
formance of the Shapiro et al. (2010) and Hallo et al. (2014)
models across a wide range of WWD-induced seismicity case
studies.

Forecasting-induced seismicity magnitudes using
extreme value estimators
An alternative approach relies solely on the characterization of
the earthquake population without any reference to injection
or production rates or any other subsurface information. This
approach, applied by Mendecki (2016) for mining-induced
seismicity, is based on the theory of extreme value estimators
developed by Cooke (1979) and is related to methods devel-
oped to estimate tectonic MT

MAX values from observed natural
earthquake populations (e.g., Kijko, 2004). The relative sim-
plicity of this method, because it does not require any opera-
tional or geological information, is an attractive aspect of this
approach. A limitation is the need for a catalog of observed
seismicity to make a forecast. However, for cases of induced
seismicity, we are often able to observe the seismicity to a
low magnitude of completeness if dedicated monitoring
systems are installed before the start of operations.

Mendecki (2016) applied two approaches to forecasting
induced seismicity magnitudes using the order statistics theory
of Cooke (1979). For a random sample of n magnitude obser-
vationsMO drawn from a constant underlying distribution, the
upper limit for future such observations can be estimated as

MUL � 2MO
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in which MO
i represents the observed event magnitudes sorted

into size order, from smallest to largest, such that MO
n is the

largest event observed to date, which we refer to as MO
MAX.

Alternatively, one can consider the jumps in magnitude
between events ΔMO because an estimate for the next largest
event can be obtained by adding the estimated maximum jump
ΔMMAX to the observed largest event. We refer to this estimate
as the “jump-limited” magnitude,

MJL � MO
MAX � ΔMMAX: �2�

The maximum jump is calculated using the same formu-
lation as equation (1) but applied to the distribution of mag-
nitude jumps,
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in which ΔMO
i represents the magnitude jumps ordered from

smallest to largest and nj is the number of jumps. There are

several ways in which these methods can be applied in practice
to forecast induced event magnitudes (see the Methods section
for further details). For example, because these estimators can
be applied to any quantity, the input to these equations can be
magnitudes, seismic moments, or potencies.

Our aim in this study is to forecast the magnitudes of new
record-breaking events during induced seismicity sequences
(MNRB). The two magnitude estimators defined earlier, MUL

andMJL, provide a means by which this can be done. We might
normally expect MNRB values to follow the jump-limited esti-
mator because this explicitly describes the jumps to new rec-
ord-breaking magnitudes. However, there is a possibility that
the next event to occur is at (or close to) the upper limit value
as given by the MUL estimator. We therefore might expect to
find, in practice, a distribution of MNRB observations, with
most cases falling close to theMJL values but with some events
falling closer to the MUL estimate. Hence, our approach is to
combine our estimates ofMUL andMJL to produce a combined
estimator for MNRB.

We note that in forecasting record-breaking events, the
implicit assumption is that induced event magnitudes will con-
tinue to grow during a sequence. In reality, induced seismicity
sequences may stabilize and decrease, either as pressures stabi-
lize in large, open reservoirs (e.g., Verdon et al., 2024) or in
response to successful mitigating actions taken by operators.
Clearly, forecasting methods that include an implicit assumption
that new record-breaking magnitudes will occur may not be
appropriate in such circumstances. In the Time-dependent fore-
casting section, we discuss how it might be possible to identify
when an induced seismicity sequence is decaying such that fore-
casting new record-breaking events is no longer appropriate.
Similarly, the methods presented in equations (1)–(3) do not
provide any temporal constraint—when might a new record-
breaking event be expected to occur? Again, in the Time-depen-
dent forecasting section, we provide some discussion as to how
temporal constraints could be introduced.

The need for performance assessment of induced
seismicity forecasting models
If induced seismicity forecasting models are to be used to guide
decision making at active industrial sites, then there is a clear
need for robust, transparent testing of such models. Only
through robust testing can we gain confidence in the perfor-
mance of models such that they can be relied on to guide
operational decisions that, on the one hand, may compromise
significant financial investments (if projects are abandoned
because of potential induced seismicity hazard) but on the
other hand could compromise public safety (if larger magni-
tude events are allowed to occur without mitigation). The
public often takes a strong interest in the occurrence of
induced seismicity, so model testing must be transparent
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and reproducible because a loss of trust of public in ability to
safely conduct underground energy operations may easily
result in a loss of social license to operate and rejection of
future projects.

Empirical testing of forecasting models can go beyond sim-
ple assessments of performance because results can be used to
feed back into future forecasts. In our case, we anticipate that
record-breaking magnitudes will follow the MJL estimator, but
we allow for the possibility that magnitudes could jump to the
upper limit MUL value. As such, the MJL and MUL values may
provide lower and upper estimates for MNRB, respectively. A
suite of models could be combined to produce an overall esti-
mate (and preferably, a probability distribution thereof) for
upcoming induced event magnitudes. An overall estimate from
a suite of models should consider the observed performances of
the different modeling strategies as applied to large numbers of
induced seismicity case studies.

Study objectives
The objective of this study is to provide a systematic assessment
of the performance of theMUL andMJL estimators as applied to
a large number of cases of injection-induced seismicity. We
evaluate several different ways in which these methods can
be applied, for example, using earthquake magnitudes versus
potencies as the inputs to equations (1)–(3) and using all
observed events and jumps as inputs versus only the events
and jumps that represent new record-breaking events (see the
Methods section). In doing so, we investigate the influence of
these different formulations on the resulting MNRB forecasts
and quantitatively compare their respective performances.

Our observations across a large number of induced seismic-
ity sequences provide empirical data on the behavior of record-
breaking magnitudes relative to the MUL and MJL estimators.
These observations allow us to define an empirically con-
strained estimator forMNRB, in which the next record-breaking
magnitude is expected to fall within a statistical distribution
that is defined based on the MUL and MJL estimates.

Methods
Equations (1)–(3) describe two approaches to estimating
induced event magnitudes. MUL describes the expected upper
limit magnitude based on the population of observed events to
date.MJL defines the expected next record-breaking magnitude
based on the population of magnitude jumps, with the largest
expected magnitude jump being added to the largest observed
event to date.

For both of these estimates, calculations can use either the
earthquake magnitudes or seismic moments MO (or potencies,
P � MO=G, in which G is the shear modulus). Hereafter, we
refer to results computed using magnitudes with the subscript
MM and results computed using potencies with the subscript
MO. Furthermore, the magnitudes and magnitude jumps used
as inputs to equations (1)–(3) can be taken from the entire event

catalog, in which MO
i represents the entire event population

sorted into size order and ΔMO
i represents the magnitude (or

potency) jump between every event when the entire population
is sorted into magnitude order, withΔMO

i then being sorted into
size order. Alternatively, one can use an event population that
consists only of the record-breaking events as they appear in a
sequence, in which MO

i represents the record-breaking events
sorted into size order and ΔMO

i represents the jumps between
the record-breaking events. Hereafter, we refer to calculations
using the entire event population sorted into size order with
the subscript AE (for all events) and calculations using only
the record-breaking events as RB (for record-breaking events).
These combinations mean that we have a total of eight possible
ways in which induced event magnitudes can be estimated.
These are summarized in Table 1.

We note that dedicated microseismic monitoring arrays
often produce large numbers of events (e.g., Verdon and
Budge, 2018), but even for a very large catalog ranging across
several orders of magnitude, we often observe only a few rec-
ord-breaking events. Thus, the methods based on record-break-
ing versus all events represent different approaches to statistical
estimates. By definition, the record-breaking method excludes
aftershocks because they are smaller than (and occur after) a
mainshock and therefore do not contribute to record-breaking
series. However, the approach based on all events includes
aftershocks in the evaluation of the maximum magnitude while
representing the whole sequence.

Given the different ways in which these estimators can
be applied to induced seismicity sequences, there is a clear
need to produce a quantitative comparison of their relative

TABLE 1
Summary of Different Model Implementations Used
for MNRB Forecasting

Model
Number

Model
Name

Upper
Limit or
Jump-
Limited
Formula

All Events
in Size
Order or
Record
Breaking
Only

Magnitudes
or Potencies

1 MUL RB MM UL RB MM

2 MUL RB MO UL RB MO

3 MUL AE MM UL AE MM

4 MUL AE MO UL AE MO

5 MJL RB MM JL RB MM

6 MJL RB MO JL RB MO

7 MJL AE MM JL AE MM

8 MJL AE MO JL AE MO

AE, all events in size order; JL, jump-limited formula; MM, magnitude; MO, potency;
RB, record breaking; UL, upper-limit formula.
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performance in forecasting magnitudes during induced seis-
micity sequences. Several studies have applied various versions
of the MUL and/or MJL methods to cases of induced seismicity
(Cao et al., 2020; Verdon and Bommer, 2021; Schultz, Park,
et al., 2023; Watkins et al., 2023; Cao et al., 2024). In general,
these studies have produced results that show that, at least
from a qualitative perspective, these methods do provide useful
forecasting potential. Whereas Mendecki (2016) formulated
these methods in terms of seismic potency, all of the later stud-
ies have used earthquake magnitudes. Cao et al. (2020) applied
the MUL and MJL methods to the seismicity induced by gas
production at Groningen and to a case of hydraulic-fractur-
ing-induced seismicity in North America. In their calculations,
they used all events and jumps within the catalogs, not just
record-breaking ones.

Verdon and Bommer (2021) applied the MJL approach to a
compilation of 22 instances of hydraulic fracturing–induced seis-
micity, andWatkins et al. (2023) applied theMJL approach to 27
cases of seismicity induced by WWD and NGS. Similar to Cao
et al. (2020), Verdon and Bommer (2021) and Watkins et al.
(2023) used the jumps between all events (when sorted into size
order), not just the jumps to new record-breaking events.

Cao et al. (2024) applied the MJL approach to 15 cases of
induced seismicity (mostly consisting of the same hydraulic
fracturing sequences examined by Verdon and Bommer,
2021) but using as input to their model only the population
of jumps that created new record-breaking events. Schultz,
Park, et al. (2023) applied the MJL approach to the sequence
of WWD-induced seismicity at Musreau Lake, Alberta. Similar
to Cao et al. (2024), they used as inputs only the population of
jumps that created new record-breaking events.

For all the earlier studies, the assessment of model perfor-
mance has been somewhat unsystematic. Mendecki (2016)
demonstrated his methods by application to a single example
of mining-induced seismicity but did not make any quantita-
tive assessment of model performance. Similarly, Cao et al.
(2020) and Schultz, Park, et al. (2023) simply compared the
evolution of the observed earthquakes with the changing
MNRB estimates, noting that the models generally did a reason-
able job of fitting the observed magnitudes. Verdon and
Bommer (2021) and Watkins et al. (2023) produced crossplots
of modeled versus observed MMAX (the largest magnitude
within each sequence), and Cao et al. (2024) compared mod-
eled and observed magnitudes each time a new record-break-
ing event occurred (MNRB). These plots showed evidence for
correlation between observed and modeled magnitudes but
also showed that at times, the MJL model can underestimate
MNRB. As such, there has not yet been any effort to systemati-
cally quantify the performance of these methods, either
between the different methods or for the same method between
different sites. In the following section, we introduce the data-
sets that we use to assess the performance of each method
before presenting our results in the Results section.

Datasets
Oklahoma and southern Kansas
WWD in central and northern Oklahoma and southern Kansas
(OK-KS, hereafter) has increased significantly over the past
two decades, driven primarily by a move toward hydrocarbon
production from reservoirs with high-water fractions, with the
produced water then requiring disposal (Rubenstein and
Mahani, 2015). WWD, primarily into the deep Arbuckle
Formation, has caused significant amounts of induced seismicity
(Weingarten et al., 2015), including some of the largest induced
events to have ever been recorded from fluid injection activities,
such as the M 5.6 Prague (Keranen et al., 2013) and M 5.8
Pawnee (Yeck et al., 2017) sequences. Induced seismicity in
Oklahoma has also been caused by hydraulic fracturing (e.g.,
Holland, 2013; Skoumal et al., 2018; Verdon and Rodríguez-
Pradilla, 2023), particularly in the Anadarko basin. However,
our focus here is on central and northern OK-KS, where the
bulk of the seismicity is caused by WWD.

In this study, we use the earthquake catalog published by
Park et al. (2022), who used the PhaseNet deep learning model
(Zhu and Beroza, 2019) to detect earthquakes recorded by pub-
licly available seismic networks in the OK-KS region. The deep
learning model produced a significant increase in event detec-
tion, improving detection thresholds by ≥1 magnitude unit
over pre-existing earthquake catalogs for the region. We adopt
a minimum magnitude of completeness of Mc � 1:5 based on
the magnitude–frequency relationships plotted in figure 2 of
Park et al. (2022). To estimate potencies from the given mag-
nitudes, we adopt a single value of G = 20 GPa. (This value is
adopted for all sequences in our study.)

There are 70 earthquakes in the Park et al. (2022) catalog
with magnitudes ≥4.0. Some of these events occur in close spa-
tial proximity to each other such that they can be considered to
be part of the same sequence. Park et al. (2022) identified clear,
discrete fault structures that were responsible for hostingmost of
the larger magnitude events. These structures typically had
lengths of between 5 and 20 km (see figs. 1 and 2 of Park
et al., 2022). When multiple M ≥4.0 events were located within
10 km of each other, we treated them as being part of the same
sequence of induced events. In doing so, we identified 24 indi-
vidual sequences in which induced event magnitudes reached or
exceeded M 4.0 (see Fig. 1). We take these 24 sequences as test
datasets for our analysis. For each case, we define a 20 × 20 km
square around theM ≥4.0 event (or the largest event for sequen-
ces that contain more than one M ≥4.0 event). All earthquakes
within this square are taken as representing part of the sequence
and used to perform our MMAX forecasting. The M ≥4.0 events
and the 20 × 20 km squares around them are shown in Figure 1.
The choice of dimensions (20 × 20 km) was somewhat arbitrary,
but we found that such dimensions were usually sufficient to
capture the bulk of the seismic events that occurred on each
of the discrete fault strands that hosted larger events, as iden-
tified by Park et al. (2022).
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In testing induced seismicity forecasting models, there can be
a tendency to focus on cases in which larger magnitude events
occurred because these cases tend to attract the most attention
(from the public and policy makers, as well as from academics).
However, comprehensive testing should include sequences that
did not reach larger magnitudes because our objective is to
develop models that can differentiate between sequences that
do and that do not escalate to higher magnitude events.
Hence, in addition to the 24 sequences with M ≥4.0 events,
we identify the same number of cases in which magnitudes
did not exceed M 3.5, selecting twenty-four 20 × 20 km blocks
at random within the study area that contained at least 500
events but no events with M ≥3.5. To do so, we randomly gen-
erated block positions and rejected those that did not meet these
criteria, continuing until we had 24 cases. The 24 blocks without
larger magnitude events are also shown in Figure 1.

There is some overlap
between the different blocks
that are treated hereafter as
discrete induced seismicity
sequences, meaning that some
events are included in more
than one forecast. This will cre-
ate some partial dependence
between results from individ-
ual sequences. However, in
our view, a smaller event that
is midway between the future
locations of two different larger
events could be reasonably
considered to be a precursor
to either or both, so it is rea-
sonable that such events could
be included within the fore-
casts for both larger events,
and this partial dependence
cannot therefore be avoided.

Permian basin, western
Texas
Induced seismicity has been
recognized in the Permian
basin of western Texas (WTX,
hereafter) since the 1970s
(Davis and Pennington, 1989).
Rates of seismicity in the basin
have increased substantially
since 2015 (Skoumal et al.,
2020), associated with WWD
and hydraulic fracturing.
Given the collocation of these
activities, distinguishing causal-
ity between WWD and

hydraulic fracturing can be challenging, although the bulk of
the seismicity is thought to have been caused by WWD
(Grigoratos et al., 2022). ThreeM ≥5.0 events have been induced
in this basin: the March 2020M 5.0 event near the city of Pecos
in Reeves County (Skoumal et al., 2021); the November 2022
Coalson Draw M 5.4 event in western Reeves County; and
the December 2022 M 5.2 event in Martin County, just to
the north of the city of Midland (Hennings and Young, 2023).

In this study, we use the TexNet earthquake catalog
(Savvaidis et al., 2019), with data running from the start of
2017 to April 2023. We computed the minimum magnitude
of completeness by evaluating the lowest magnitude at which
the cumulative magnitude–frequency distribution was consis-
tent with the G-R distribution, as assessed by the Kolmogorov–
Smirnov test with an acceptance criterion of 10% (Clauset
et al., 2009), which gave Mc � 2:0. There are 48 events for

Figure 1. Map of the Oklahoma and southern Kansas (OK-KS) study area. The black dots show all
earthquakes withM ≥1.5, and the colored circles show events withM ≥4.0. The solid boxes show
the 20 × 20 km blocks around each of the sequences containing M ≥4.0 events, and the dashed
boxes show 20 × 20 km blocks in which 500 events were recorded with noM ≥3.5 events. The box
colors correspond to the marker colors used in Figure 3. The color version of this figure is available
only in the electronic edition.
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which M ≥4.0 (Fig. 2). Our examination of the temporal and
spatial evolution of the seismicity identified 11 individual
sequences in which induced event magnitudes reached or
exceeded M 4.0. Much like for our OK-KS datasets, we define
20 × 20 km squares around each sequence and use all events
within these blocks to perform ourMNRB forecasting. We then
identify an equal number (i.e., 11) of 20 × 20 km blocks con-
taining at least 100 events (we use a lower criterion here rec-
ognizing the lower number of events in the TexNet catalog
compared with the Park et al., 2022 catalog for OK-KS) but
no events >M 3.5 to test MNRB model performance for cases
in which larger magnitude events did not occur.

Watkins et al. (2023) sequences
Watkins et al. (2023) published MMAX forecasts using the
MJL SO MM formulation for >20 individual sequences of
WWD and NGS-induced seismicity. Some of the Watkins
et al. (2023) sequences are already included in our OK-KS
and WTX datasets described in the previous sections (Reeves
and Cogdell in Texas; Cushing, Fairview, Guthrie–Langston,
Pawnee, and Prague in Oklahoma; and Milan and Harper in
Kansas), whereas for some older sequences with lower levels
of monitoring, the largest events occurred before a sufficient
number of events were available to compute MNRB estimates
(e.g., the Cordel sequence in Alberta). This left 16 additional

sequences that we were able to include in our analysis, including
the Azle-Reno, Dallas–Fort Worth, Venus, Timpson, and Irving
sequences in eastern Texas (Frohlich et al., 2014; Hennings et al.,
2021); the Guy-Greenbrier sequence in Arkansas (Horton,
2012); the Youngstown sequence in Ohio (Kim, 2013); the
Paradox Valley, Greeley, and Raton basin sequences in
Colorado (Block et al., 2014; Yeck et al., 2016; Nakai et al.,
2017); the Eagle West, Graham, and Musreau Lakes sequences
in western Canada (Horner et al., 1994; Hosseini and Eaton,
2018; Li et al., 2022); the Rongchang sequence in the Sichuan
basin (Wang et al., 2020); the Castor project in the Gulf of
Valencia, Spain (Cesca et al., 2021); and the Puerto Gaitán
sequence, Colombia (Molina et al., 2020). For each of these
sequences, we use the earthquake catalogs published in the sup-
plemental materials of Watkins et al. (2023). We refer to these
sequences as the W23 cases hereafter.

Figure 2. Map of the western Texas study area. The black dots
show all earthquakes with M ≥1.0, and the colored circles show
events withM ≥4.0. The solid boxes show the 20 × 20 km blocks
around each of the sequences containingM ≥4.0 events, and the
dashed boxes show 20 × 20 km blocks in which 100 events were
recorded with no M ≥3.5 events. The box colors correspond to
the marker colors used in Figure 4. The color version of this figure
is available only in the electronic edition.
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Application
For the OK-KS and WTX datasets, we computeMNRB values at
intervals of 0.5 months, starting at the time when at least 10
events above the magnitude of completeness within the
sequence have been recorded and continuing for the duration
of the available catalog. For the W23 sequences, the time spans
of each sequence are highly variable; we therefore compute
MNRB values at 1000 evenly spaced intervals between the first
and final event within each sequence. At each timestep, we esti-
mate the next record-breaking magnitude in a pseudoprospec-
tive manner using all the events in the sequence that occurred
prior to a given time to estimateMNRB for the next time interval.

Our objective is to assess the forecast performance as each
sequence evolves. We therefore make comparisons between
observed and modeled magnitudes each time there is a new
largest event within the sequence. Each new largest event
within the sequence is treated as an observed record-breaking
event MO

NRB. The M
O
NRB values are compared against the MNRB

values calculated at the timestep prior to when theMO
NRB event

occurred. For the calculations made using potencies, the
modeled values are converted back to magnitude to facilitate
a comparison with the observed magnitudes.

Results
Figures 3–5 show our results, comparing the observed and
forecast MO

NRB and MNRB values using each of the eight meth-
ods described in Table 1 for the sequences from OK-KS
(Fig. 3), WTX (Fig. 4), and W23 sequences (Fig. 5). In total,
we have applied our models to 86 sequences (48 in OK-KS, 22
in WTX and 16 fromW23), with a combined total of 331 indi-
vidual record-breaking events within these sequences (205
from OK-KS, 72 fromWTX, and 54 fromW23). The time evo-
lution of every individual sequence and the corresponding

modeled MNRB values are provided in the Section S3, available
in the supplemental material to this article.

We quantify the model performance using several metrics. We
compute the root mean squared error (rmse) between modeled
and observed magnitudes σrms, the Pearson correlation coefficient
between modeled and observed magnitudes r, and the gradient of
the line of (least squares) best-fit m. A well-performing model
should minimize σrms, maximize r and have a best-fit gradient
close to 1.0, implying a 1:1 relationship between MNRB and
MO

NRB. In addition, in most applications, we anticipate that
MNRB forecasting will be used to guide operational decision mak-
ing to avoid unwanted large events. It is therefore of particular
importance that models do notmake large underpredictions, such
that the actual seismicity significantly exceeds what has been fore-
cast by the model. We therefore compute NUP, the percentage of
MO

NRB instances for which the forecast MNRB value was a signifi-
cant underprediction with MNRB < MO

NRB − 0:5. These metrics
are listed in Table 2 for the OK-KS, WTX, and W23 sequences.

In general, we observe strong correlation between the mod-
eled and observed MNRB values, implying that these methods all

Figure 3. Results for the OK-KS sequences comparing observed and
modeled magnitudes for each of the MNRB forecasting methods
listed in Table 1. Marker colors correspond to sequences within
each box shown in Figure 1. Panels show results for (a) upper limit
method using only record breaking events with magnitudes;
(b) upper limit method using only record breaking events with
moments; (c) upper limit method using all events with magnitudes;
(d) upper limit method using all events with moments; (e) jump-
limitedmethod using only record breaking events withmagnitudes;
(f) jump-limited method using only record breaking events with
moments; (g) jump-limited method using all events with magni-
tudes; (h) jump-limited method using all events with moments. The
color version of this figure is available only in the electronic edition.
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provide useful forecasting information for induced seismicity
magnitudes and could therefore be used as part of a decision-
making strategy to manage induced seismicity. The performance
of these models is generally better than that found by Verdon
et al. (2024) for commonly used volume-based forecasting mod-
els, having higher correlation coefficients between modeled and
observed magnitudes, lower rmse (except for the MUL RB MM

and MUL RB MM models), and fewer cases for which models
produced significant underpredictions of upcoming magnitudes.

More detailed inspection of Figures 3–5 and Table 2 leads us
to the following conclusions, all of which are consistent
between the OK-KS, WTX, and W23 sequences.

Using sorted magnitudes or just record-breaking
events does not significantly change forecasting
performance
The use of the entire earthquake catalog, versus solely using rec-
ord-breaking events (or jumps to record-breaking events), was a
key point of difference between Cao et al. (2020), Verdon and
Bommer (2021), and Watkins et al. (2023) on the one hand
and Cao et al. (2024) and Schultz, Park, et al. (2023) on the other.
However, the comparison of panels (a) versus (c), (b) versus (d),
(e) versus (g), and (f) versus (h) in Figures 3–5 shows that these
different implementations in fact produce very similar results.
From examination of equations (1) and (3), this outcome is unsur-
prising because only the first few terms of the weighting applied to
the summation of the magnitudes (or jumps), given by

Wi �
�
1 −

i
n

�
n
−

�
1 −

i� 1
n

�
n
, �4�

are significant (Mendecki, 2016). The first weightings correspond
to the largest magnitudes (or magnitude jumps), which tend to be

magnitudes (or jumps) that produce record-breaking events.
Figure 6 plots the value ofWi as a function of i and n. The weight-
ing term drops to values of ≤0.01 after the fourth term in the sum-
mation (the weighting applied to the fourth-largest magnitude or
jump). The fact that only a few values are required to produce
stable magnitude estimates is an additional advantage of this
approach because it can be applied even when only a few initial
events have been observed in a new sequence.

Upper-limit models using magnitude provide a
credible upper limit
The MUL AE MM and MUL RB MM models (Figs. 3a,c–5a,c) did
not produce any significant underpredictions (NUP � 0). This
is notable given that we have applied it to 86 individual earth-
quake sequences. Hence, the UL_MM values (upper-limit cal-
culations using magnitudes) do seem to provide a credible
upper limit to induced earthquake magnitudes.

However, although these values never produced underpre-
dictions, they did not provide a good fit to the evolution of rec-
ord-breaking magnitudes within sequences, tending to produce
significant overpredictions in most cases. This is to be expected
because the MUL method is formulated to estimate the largest
possible value within a distribution, not the expected next rec-
ord-breaking event. As a result, theMUL AE MM andMUL RB MM

models gave the largest σrms values and best-fit relationships
with the gradientm significantly >1.0. That said, the correlation

Figure 4. Results for western Texas (WTX) sequences comparing
observed and modeled magnitudes for each of the MNRB fore-
casting methods listed in Table 1. Marker colors correspond to
sequences within each box shown in Figure 2. Panels (a–h) are as
described in the caption for Figure 3. The color version of this
figure is available only in the electronic edition.
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coefficients for theMUL AE MM andMUL RB MM models are not
significantly worse than those of other models, implying that the
scatter between modeled and observed magnitudes is no worse
than for the other models, but the fit is not along the 1:1 line,
resulting in systematic overprediction.

Next record-breaking models using magnitudes
produce the highest scatter
Although theMJL AE MM andMJL AE MM models (Figs. 3e,g–5e,g)
produced reasonable fits between observed and modeled mag-
nitudes, with the gradient m close to 1.0, these models had the
lowest correlation coefficients of all the models and the highest
σrms values with the exception of the overpredictingMUL AE MM

and MUL RB MM models, as described earlier. The MJL AE MM

and MJL RB MM models therefore produced the highest scatter
between modeled and observed magnitudes and may therefore
have the least utility in forecasting. This is ironic given that this
approach has been the most widely used to date, forming the
basis of the results presented by Cao et al., (2020, 2024),
Verdon and Bommer (2021), Watkins et al. (2023), and
Schultz, Park, et al. (2023).

Potency-based models have the least scatter but
significantly underpredict on occasion
All four of the models that used earthquake potencies,
MUL AE MO, MUL RB MO, MJL AE MO, and MJL RB MO

(Figs. 3b,d,f,h–5b,d,f,h), produced similar results. These models
had the lowest σrms values and highest correlation coefficients,
indicating that these models had low scatter and the closest
match between modeled and observed magnitudes. However,
these models also produced the largest number of underpredic-
tions, with between 10% and 15% of events being underpredicted
by >0.5 magnitude units. We surmise that in most cases for

which sequences are evolving relatively gently, the potency-based
models perform well. However, they do not perform as well in
capturing the more unusual sequences in which a sharp increase
in magnitudes takes place.

Discussion
Toward an empirically constrained probabilistic
model
Our results show that the upper-limit magnitude-based
models MUL AE MM and MUL RB MM provided credible upper
bounds for the actual event magnitudes, having no significant
underpredictions after application to a large number of
sequences. However, in most cases, these models overpredicted
the observed events. In contrast, the potency-based models
(MUL AE MO, MUL RB MO, MJL AE MO, and MJL RB MO) gener-
ally produced a good fit to the observed magnitudes but
occasionally produced significant underpredictions.

From this, it is reasonable to propose a composite approach to
forecasting event magnitudes for which MUL AE MM or
MUL RB MM is used provide an upper estimator for the expected
magnitude of the next record-breaking event and MUL AE MO,
MUL RB MO,MJL AE MO, orMJL RB MO is used to provide a lower
estimator for the expected magnitude. Hereafter, we use
MUL RB MM for the upper estimator andMJL AE MO for the lower
estimator, referred to hereafter as MUE and MLE, respectively.

The probability distribution of event magnitudes between
these estimators can be evaluated through empirical calibration

Figure 5. Results for the W23 sequences comparing observed and
modeled magnitudes for each of the MNRB forecasting methods
listed in Table 1. Panels (a–h) are as described in the caption for
Figure 3. The color version of this figure is available only in the
electronic edition.
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with our observed seismicity. For each event, we normalize
each observed record-breaking event magnitude relative to
the MLE and MUE estimators at the time of the event’s
occurrence,

MO
N � MO

NRB −MLE

MUE −ML
: �5�

We then examine the distribution of these normalized mag-
nitudes—where do events typically fall with respect to the
upper and lower magnitude estimators? Our results for each

of our studies are shown in Figure 7. The distributions of
MO

N are consistent between the three sets of sequences that
we studied. Most values are close to 0, that is, they match
the modeled lower estimator values MO

NRB � MLE. However,
the distribution has a tail of higher values extending toward
1, that is, where observed magnitudes reach toward the higher
estimator values MO

NRB � MUE.
We examine the fit of various statistical distributions to our

observations, including lognormal, a Gumbel, and generalized
extreme value (GEV) distributions. We further test the perfor-
mance of these distributions when applied to synthetically gen-
erated sequences. These results are shown in Sections S1 and
S2, available in the supplemental material to this article. The
consistency found for MO

N between our different case studies
and synthetic models enables us to construct an empirically
constrained probabilistic model for induced seismicity fore-
casting using extreme value estimators. We find that our obser-
vations are reasonably approximated either by a shifted
lognormal distribution with a mean of μLN � −1:4, a deviation
of σLN � 0:6, and a shift of δLN � 0:2 or a GEV distribution
with shape parameter kGEV � 0:23, scale parameter
σGEV � 0:1, and location parameter μGEV � 0:0. Hereafter,
we use the GEV distribution as providing the best fit to our
combined observations (see Section S1).

For a given sequence of seismicity, we compute the MUE

and MLE estimators at a given time. Having computed MUE

and MLE, we can compute the probabilities for the next largest
magnitude event that will occur in the sequence. We use equa-
tion (5) to normalize magnitudes relative toMUE andMLE and
then estimate the probability of occurrence for any magnitude
event from the GEV distribution with scale, shape, and
location parameters described in the previous paragraph.

TABLE 2
Performance Metrics for OK-KS, WTX, and W23
Sequences

Model σrms r m NUP (%)

OK-KS

MUL RB MM 1.84 0.86 1.27 0

MUL RB MO 0.41 0.86 0.76 14.2

MUL AE MM 1.67 0.86 1.24 0

MUL AE MO 0.41 0.85 0.76 14.2

MJL RB MM 0.93 0.75 1.11 3.4

MJL RB MO 0.37 0.87 0.82 12.7

MJL AE MM 0.47 0.81 0.85 7.3

MJL AE MO 0.41 0.85 0.78 14.6

WTX

MUL RB MM 2.06 0.90 1.23 0

MUL RB MO 0.32 0.92 0.78 12.5

MUL AE MM 1.84 0.91 1.26 0

MUL AE MO 0.32 0.92 0.78 12.5

MJL RB MM 0.89 0.83 1.35 2.8

MJL RB MO 0.32 0.91 0.81 12.5

MJL AE MM 0.54 0.80 0.98 5.6

MJL AE MO 0.32 0.91 0.79 12.5

W23

MUL RB MM 2.37 0.93 1.62 0

MUL RB MO 0.34 0.94 0.93 11.1

MUL AE MM 2.43 0.92 1.66 0

MUL AE MO 0.34 0.94 0.93 11.1

MJL RB MM 0.81 0.83 1.04 3.7

MJL RB MO 0.34 0.93 0.94 11.1

MJL AE MM 0.59 0.85 1.05 3.7

MJL AE MO 0.34 0.94 0.93 9.3

OK-KS, Oklahoma and southern Kansas; WTX, western Texas.

Figure 6. Value of the weightingW applied within the summation
term in equations 1 and 3 (as defined in equation 4) as a function
of i. The contours here show values of log10�W�. For any value of
n, the weighting for terms in which i > 4 is <0.01. The color
version of this figure is available only in the electronic edition.
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Our synthetic testing (see Section S2) shows that the
observed distributions are consistent with situations in which
no upper truncation is applied to the G-R distribution from
which the events are drawn (or that the magnitude of trunca-
tion is much larger than the observed event sizes, such that it
has, in effect, no impact on the simulated magnitudes). When a
truncation is applied to our synthetic tests, the MO

N values are
systematically shifted toward the lower estimator (MO

N � 0),
such that the representative distributions defined earlier are
no longer appropriate. The similarities between our observed
distributions and those generated by an untruncated model,
alongside past studies that have generally failed to find signifi-
cant evidence for magnitude truncations in most induced seis-
micity cases (e.g., van der Elst et al., 2016), suggest that our
approach is reasonable with respect to this caveat. However,
if clear upper truncations to the G-R distribution are observed
for induced seismicity sequences (e.g., Verdon et al., 2018),
then alternative methods for MMAX estimation, such as those
that explicitly assume an upper-truncated G-R distribution
(e.g., Kijko and Sellevoll, 1989; Pisarenko et al., 1996;
Holschneider et al., 2011), may be preferable.

Application to out-of-sample cases
We demonstrate this approach by application to two notable
cases of induced seismicity: from hydraulic fracturing at the
PNR-2 well in Lancashire, England, in 2019 (Kettlety et al.,
2021) and from seismicity associated with WWD activities
in north-western Alberta near the town of Peace River
(Schultz, Woo, et al., 2023). The PNR-2 sequence is notable
because its occurrence led the U.K. government to impose a
moratorium on hydraulic fracturing, primarily because of
the perceived inability to “accurately predict the probability
or magnitude of earthquakes linked to fracking operations”
(BEIS, 2019).

Figure 7. Distribution of normalized observed magnitudes MO
N

(bars), in which the observed magnitudes are normalized relative
to the modeled upper and lower estimators for the (a) OK-KS,
(b) WTX, and (c) W23 sequences and for (d) all observations
combined. The red and blue lines show the shifted lognormal
and generalized extreme value (GEV) distributions that we adopt
to approximate the observed distributions. The color version of
this figure is available only in the electronic edition.
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The Peace River sequence reached a magnitude of M 5.6 in
November 2022. If induced (the nature of this event is still dis-
puted; see Salvage et al., 2024), it would be the largest magni-
tude induced event in the Western Canada Sedimentary basin.
This sequence is useful for our purposes because given when it
occurred, it was not included in the sequences compiled by
Watkins et al. (2023), so it represents an out-of-sample test
because the sequences in W23 were used to generate our
empirically constrained distribution of MO

N .
For the PNR-2 sequence, we use the corrected moment

magnitudes published by Kettlety and Butcher (2022); these
Mw values are different from the ML values published by
Kettlety et al. (2021). For the Peace River sequence, we use
earthquakes from the Alberta Geological Survey database
(Alberta Geological Survey [AGS], 2020). Our results are
shown in Figure 8, in which the observed seismicity is com-
pared with the forecast values. The solid lines in Figure 8 show
the magnitude that has a 50% chance of exceedance by the next
record-breaking eventM50, and the dashed lines showM95 and
M05 (i.e., the magnitude that has a 95% chance of being
exceeded, and the magnitude that has a 5% chance of being
exceeded by the next record-breaking event).

For the Peace River case, the forecast values are stable for
the duration of the sequence. The M 5.6 event that occurs is
close to the M05 value, indicating a 5% likelihood of this mag-
nitude being reached or exceeded.

For PNR-2, theM 2.8 event is well within the forecast range
and close to the M50 value at the time it occurred. Hydraulic
fracturing at PNR-2 was conducted as a series of discrete injec-
tion stages, typically lasting between 1 and 2 hr, with only one
injection stage taking place each day. Stage 7 was the last stage
to have been stimulated, with theM 2.8 event occurring ∼72 hr
after this stage had been completed (Kettlety et al., 2021). The
forecast values prior to stage 7 are therefore of particular inter-
est because these values could have informed the operational
decision to perform this stage. At the time that injection of
stage 7 began, the likelihood of reaching or exceeding M 2.8
was 12%. The forecasting model therefore provides a reason-
able characterization of the hazard at the time that the decision
to proceed with stage 7 was made.

Interestingly, the event that most exceeds the forecast is the
M 1.9 event that followed stage 6. At the start of injection of
stage 6, the likelihood of reaching or exceeding M 1.9 was only
1%. Kettlety et al. (2021) identified that stage 6 saw a significant
change in geomechanical behavior in the reservoir, with micro-
seismicity beginning to occur along the fault structure that ulti-
mately hosted theM 2.8 event. Kettlety et al. (2021) interpreted
the microseismicity prior to stage 6 as being associated with
hydraulic fracture propagation (and the reactivation of some
natural fracture networks), whereas microseismicity from stage
6 onward begins to represent the onset of reactivation of a
critically stressed fault.

This highlights one of the challenges with induced seismic-
ity forecasting—when a sudden change in the underlying
geomechanical behavior takes place, events from before this
change may not be useful in forecasting subsequent behavior.
As described in the Methods section, theMUL andMJL estima-
tors assume that record-breaking magnitudes are sampled
from a stationary underlying distribution. This caveat also
applies to other induced seismicity forecasting methods that
assume constant scaling between injection rates and induced
seismicity rates (e.g., Shapiro et al., 2010; Hallo et al., 2014;
Mancini et al., 2021).

It is unclear the degree to which this assumption should be
expected to hold for induced seismicity sequences. For WWD,
injection rates are typically constant over years, creating a slow
and steady pressure increase, such that a relatively constant
underlying distribution of seismicity might be expected.
However, Verdon et al. (2024) found evidence for accelerating
rates of seismicity relative to injection volumes during the early
stages of WWD-induced seismicity onset, which then stabi-
lized at later times.

Figure 8. Application of the empirically constrained forecasting
model to the (a) Preston New Road-2 (PNR-2) and (b) Peace River
sequences. Observed events are marked with gray dots. The solid
line marks M50, and the dashed lines mark M05 and M95. For
PNR-2, the bursts of seismicity associated with each discrete
hydraulic fracturing interval (stages 1–7) are marked with gray
arrows.
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The successful performance of theMUL andMJL estimators
in our study suggests that the assumption of stationarity is
sufficiently satisfied, at least on the timescale of intervals
between record-breaking events in these WWD-induced
sequences. In contrast, for hydraulic fracturing at PNR-2,
the microseismicity associated with hydraulic fracture propa-
gation during the earlier stages does not do a good job of fore-
casting what happened as the larger fault began to reactivate.
After this fault reactivated, the forecasting model using the
seismicity from this point onward does a good job of forecast-
ing the subsequent seismicity that developed.

These observations show that care should be taken to
fully interpret and understand the geomechanical behaviors
that can be manifested in microseismic event observations
when using statistical models to forecast induced seismicity.
It may be necessary to assess whether the underlying assump-
tions, such as stationarity and constancy of scaling between
injection rate and seismicity rate, are reasonable in a particu-
lar case. These assumptions may not be appropriate in situa-
tions, such as at PNR-2, for which a new fault structure
is encountered by a growing injection pulse and begins to
reactivate.

Time-dependent forecasting
The forecasting methods developed here do not provide any
estimate of whether a new record-breaking event will occur
and, if so, when it will occur. The timing of the next rec-
ord-breaking event could be estimated from the growing num-
ber of earthquakes within a sequence. The expected number of
record-breaking events Nrb in a population of n events can be
approximated, assuming that the events are independent and
drawn from a constant underlying distribution, as follows
(Arnold et al., 1998; Nevzorov, 2001):

Nrb ≈ ln�n� � 0:577215, �6�

with the variance given by

Var�Nrb� � ln�n� − 1:0677: �7�

The number of record-breaking events relative to the total
number of events within the sequence could therefore be used
to indicate whether another record-breaking event might be
imminent. Further investigation of this possibility is clearly
merited.

Perhaps more important, the methods developed here,
which are based on the concept of record-breaking events,
imply that MMAX for a sequence of induced seismicity will
be ever increasing unless and until clear evidence of an upper
truncation to the G-R distribution emerges. In practice, many
sequences of induced seismicity generated by long-term injec-
tion have shown time-dependent behavior in which magni-
tudes increased during the first years of injection but then

stabilized and decreased over time (Rodríguez-Pradilla et al.,
2022; Watkins et al., 2023; Verdon et al., 2024).

As sequences stabilize and abate, magnitude forecasts based
on extreme value estimators will cease to be appropriate. Clearly,
some means of estimating the point at which the rates and
magnitudes of induced seismicity are no longer increasing
is required. One method may be to compare the numbers of
record-breaking events when the sequence is run forward versus
when the sequence is run in a time-reversed order (Mendecki,
2016). If the earthquake sequence is sampling from an under-
lying stationary distribution, then we would expect the same
number of record-breaking events whether the sequence is run
forward or backward. If there are significantly more record-
breaking events when the sequence is run forward, then this
would imply that the hazard is increasing; if there are signifi-
cantly more record-breaking events when the sequence is run
in reverse, then this would imply that the hazard is abating.
Again, further investigation of this concept is clearly merited.

Conclusions
We have assessed the performance of induced seismicity fore-
casting models for MNRB using methods based on extreme
value estimators. These models can be implemented in a num-
ber of different ways, and we have quantitatively compared the
performance of these implementations. We compiled a data-
base of >80 individual sequences of induced seismicity against
which comparisons of model performance were made. We
found that using all events within a catalog or just the rec-
ord-breaking events made little difference to the forecasting
results because the models are primarily sensitive to the largest
magnitude events in the sequence.

Estimates ofMNRB using the upper-limit method with event
magnitudes tended to overestimate the observed magnitudes.
However, unlike other models, this model never significantly
underpredicted the observed seismicity, so it has use in defin-
ing an upper estimate for MNRB. The models that used earth-
quake potency instead of magnitude produced the closest
overall fit to the observed magnitudes but on occasion did pro-
duce significant underestimates of the observed magnitudes.
The potency-based models seldom produced overpredictions
of the observed magnitudes.

Based on these observations, we conclude that the upper-
limit magnitude-based model and the jump-limited potency-
based models can be combined to give upper and lower estima-
tors for the upcoming events within an induced seismicity
sequence. We found that most of the observed events were
much closer to the lower magnitude estimator. We used these
observations to define an empirically constrained probability
distribution for expected magnitudes relative to the upper
and lower estimators. This distribution was consistent between
the different populations of induced seismicity sequences
compiled for our analysis, as well as for sequences that were
generated synthetically.
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We applied this forecasting approach to two out-of-train-
ing-sample (i.e., not used in defining our empirically con-
strained distribution) sequences of induced seismicity. We
find that in both cases, our modeling approach does a good
job of characterizing the induced seismicity that occurred.
However, the example from PNR-2 again highlights one of
the major challenges in forecasting induced seismicity: when
rapid changes in the underlying geomechanical processes
occur (e.g., when a different fault begins to be perturbed), seis-
micity from earlier within the sequence may not be useful for
forecasting after this change has occurred.

Data and Resources
The earthquake catalog for Oklahoma was sourced from Park et al.
(2022), for which the catalog is provided as a digital supplement. The
earthquake catalog for Texas was sourced from the TexNet database
at https://www.beg.utexas.edu/texnet-cisr/texnet/earthquake-catalog.
The earthquake catalogs for the sequences described by Watkins et al.
(2023) are available as a digital supplement to that article. The catalog
for Preston New Road-2 is available from the U.K. National
Geoscience Data Centre at https://webapps.bgs.ac.uk/services/ngdc/
accessions/index.html#item173104. The catalog for the Peace River
sequence was sourced from the Alberta Earthquake Dashboard at
https://ags-aer.shinyapps.io/Seismicity_waveform_app. All websites
were last accessed in February 2024.
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