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ABSTRACT 24 

Induced seismicity magnitude models seek to forecast upcoming magnitudes of induced earthquakes during the 25 
operation of subsurface industries such as hydraulic fracturing, geothermal stimulation, wastewater disposal, 26 
and carbon capture and storage. Accurate forecasting models could guide operational decision-making in real 27 
time, for example operations could be reduced or paused if forecast models indicate that magnitudes may exceed 28 
acceptable levels. Robust and transparent testing of forecasting models is required if they are to be adopted by 29 
operators and regulators of such industries. We develop and test a suite of models based on extreme value 30 
estimators to forecast the magnitudes of upcoming induced seismicity events based on observed seismicity. We 31 
apply these models to multiple induced seismicity cases from wastewater disposal in Oklahoma and in western 32 
Texas, as well as other isolated cases of seismicity caused by subsurface fluid injection in North America, 33 
Europe, and China. In total, our testing dataset consists of more than 80 individual sequences of induced 34 
seismicity. We find that all the models produce strong correlation between observed and modelled magnitudes, 35 
indicating that the forecasting provides useful information about upcoming magnitudes. However, some models 36 
are found to systematically over-predict the observed magnitudes, while others tend to under-predict. As such, 37 
the combined suite of models can be used to define upper and lower bounds for the expected magnitudes of 38 
upcoming events, as well as empirically constrained statistical expectations for how these magnitudes will be 39 
distributed between the upper and lower bounds. We conclude by demonstrating how our empirically constrained 40 
distribution can be used to produce probabilistic forecasts of upcoming induced earthquake magnitudes, 41 
applying this approach to two recent well-known cases of induced seismicity.      42 

43 
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1. INTRODUCTION 44 

Cases of induced seismicity have grown rapidly over the past two decades, associated with the growth 45 
and expansion of oilfield technologies such as hydraulic fracturing, wastewater disposal (WWD), and 46 
natural gas storage (NGS). Emerging low-carbon energy technologies such as geothermal and carbon 47 
capture and storage, which entail the injection of fluids into the subsurface, also carry the potential to 48 
generate induced seismicity.  49 

In severe cases, induced seismicity has caused damage to nearby buildings and infrastructure, and 50 
injuries to nearby people (e.g., Lee et al., 2019; Lei et al., 2019; Campbell et al., 2020). Even where 51 
induced event magnitudes are insufficient to cause damage, they are nevertheless a source of public 52 
concern (e.g., Evensen et al., 2022). A failure to adequately manage induced seismicity during 53 
development of subsurface geo-energy projects has led to the cancellation of individual projects and 54 
sites, and limits or even moratoria being imposed on entire industries. The need to develop methods to 55 
quantify induced seismicity hazard during operations, primarily by estimating what magnitudes of 56 
earthquakes are likely to be generated, is clear.   57 

Our objective is to forecast the expected size of the largest events that will occur during a sequence of 58 
induced seismicity. We refer to the largest event within a given sequence as MMAX, noting that this 59 
parameter as we use it here is different from the MMAX parameter used in seismic hazard assessment, 60 
where it denotes the largest magnitude earthquake that could possibly occur given the particular 61 
tectonic circumstances in question (e.g., Mueller, 2010).  62 

The magnitude the largest event that occurs during a given industrial operation is of particular concern 63 
to operators and regulators of subsurface industries, since this magnitude will usually determine the 64 
largest ground motion that is generated, and therefore the largest impact to nearby buildings, 65 
infrastructure and people. Accurate forecasting of MMAX (and preferably, a probability distribution 66 
thereof) could enable operators to make decisions to ensure the safety of their activities by, for 67 
example, reducing, ceasing, or making other mitigation actions to their operations if it becomes likely 68 
that unacceptably high magnitudes will be generated.   69 

If induced seismicity forecasting models are to be used to guide decision-making at active industrial 70 
sites, then there is a clear need for robust, transparent testing of such models. Only through robust 71 
testing can we gain confidence in the performance of models such that they can be relied on to guide 72 
operational decisions that, on the one hand, may compromise significant financial investments (if 73 
projects are abandoned due to potential induced seismicity hazard), while on the other hand could 74 
compromise public safety (if larger magnitude events are allowed to occur without mitigation). The 75 
public often takes a strong interest in the occurrence of induced seismicity, and so model testing must 76 
be transparent and reproducible as a loss of trust of public in ability to safely conduct underground 77 
energy operations easily results in loss of social license to operate and rejection of future projects.  78 

Empirical testing of forecasting models can go beyond simple assessments of performance since results 79 
can be used to feed back into future forecasts. For example, if a model was observed over a large 80 
number of cases to overpredict the actual MMAX in say 95 % of cases, then it would be reasonable to 81 
use such a model to define a likely upper bound. Likewise, if a model were observed to underpredict 82 
the actual MMAX in 95 % of cases, then such a model could be used as a likely lower bound. Rather than 83 
using a single model, a more robust approach is to combine a suite of models, where the respective 84 
performances of each model have been assessed across a large number of cases, in order to produce 85 
an overall forecast for MMAX that is constrained by empirical observations.    86 

1.1. Forecasting induced seismicity magnitudes 87 

A range of methods to forecast MMAX during industrial operations has been developed. One approach 88 
is to use numerical geomechanical simulations of subsurface processes (e.g., Rutqvist et al., 2013; 89 
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Verdon et al., 2015; Dempsey and Suckale, 2017). However, such modelling is often difficult to apply 90 
in practice since a detailed characterisation of the subsurface is required to generate a model. For many 91 
cases of induced seismicity, the causative faults on which seismicity has occurred were not visible in 92 
geophysical surveys acquired prior to the onset of industrial activities (e.g., Eaton et al., 2018; Cesca 93 
et al., 2021; Nantanoi et al., 2022). Even where faults are successfully imaged, quantification of their 94 
mechanical and frictional properties, as required for accurate numerical geomechanical modelling, can 95 
be challenging.  96 

The alternative to physics-based numerical modelling is to use statistics-based approaches. For these 97 
methods the observed population of seismic events is characterised statistically, and the statistical 98 
models are then used to make forecasts of the ongoing seismicity. A commonly used approach is to 99 
characterise a relationship between the rate of seismicity and the volume of fluids injected into (or 100 
removed from) the subsurface at an early stage of operations (e.g., McGarr, 1976, Shapiro et al., 2010; 101 
Hallo et al., 2014; Mancini et al., 2021). The future seismicity can then be forecast by extrapolating 102 
this relationship to a future planned injection (or production) volume. This approach has been used to 103 
forecast seismicity and guide decision-making for several notable cases of induced seismicity, 104 
including the Helsinki St1 Deep Heat project (Kwiatek et al., 2019), the Weyburn Carbon Capture and 105 
Storage Project (Verdon, 2016), and during hydraulic fracturing of the Preston New Road shale gas 106 
wells in Lancashire, UK (Clarke et al., 2019; Kettlety et al., 2021). Verdon et al. (2023) published a 107 
comprehensive appraisal of the performance of the Shapiro et al. (2010) and Hallo et al. (2014) models 108 
across a wide range of WWD-induced seismicity case studies.  109 

1.2. Forecasting using extreme value estimators    110 

An alternative approach relies solely on the characterisation of the earthquake population, without any 111 
reference to injection or production rates or any other subsurface information. This approach, 112 
developed by Mendecki (2016) for mining induced seismicity, is based on the theory of extreme value 113 
estimators developed by Cooke (1979), and is related to methods developed to estimate tectonic MMAX 114 
values from observed natural earthquake populations (e.g., Kijko, 2004). The relative simplicity of this 115 
method, since it does not require any operational or geological information, makes for an attractive 116 
approach since model performance can be quickly and easily assessed across a broad range (both 117 
geographically and by type of industrial activity) of sites. A limitation of this approach is the need to 118 
for a catalog of observed seismicity to make a forecast. However, we note that for cases of induced 119 
seismicity we often know the complete catalog of induced seismicity to a high magnitude of 120 
completeness if dedicated monitoring systems is usually installed before the start of the activity.  121 

There are several ways in which this approach can be applied to forecast MMAX (see Section 2 for 122 
further details). Mendecki (2016) developed two alternative formulations, the upper limit magnitude, 123 
MUL, which is based on the population of observed magnitudes, and the next record-breaking event, 124 
MJL, which is based on the population of magnitude jumps, with the largest expected magnitude jump 125 
being added to the largest observed event to date. Within these two types of estimates, calculations can 126 
use either the earthquake magnitudes or seismic moments, MO (or potencies, P = MO/G, where G is 127 
the shear modulus). Furthermore, the magnitudes and magnitude jumps can be taken from the entire 128 
event catalog sorted into size order, or they can take only the magnitudes and jumps that represent 129 
record-breaking events (i.e., using only the events that represent a new largest event within a 130 
sequence). Given the different ways in which the Cooke (1979) extreme value estimator can be applied 131 
to induced seismicity sequences, there is a clear need to produce a quantitative comparison of their 132 
relative performance in forecasting MMAX for induced seismicity. 133 

Several studies have now applied various versions of the MUL and/or MJL method to cases of induced 134 
seismicity (Cao et al., 2020; Verdon and Bommer, 2021; Watkins et al., 2023; Schultz et al., 2023a; 135 
Cao et al., 2023). In general, these studies have produced results that show that, at least from a 136 
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qualitative perspective, these methods do provide useful forecasting potential, as described in the 137 
following paragraphs.   138 

Whereas Mendecki (2016) formulated these methods in terms of seismic potency, all of these later 139 
studies have used earthquake magnitudes. Cao et al. (2020) applied the MUL and MJL methods to the 140 
seismicity induced by gas production at Groningen and to a case of hydraulic fracturing-induced 141 
seismicity in North America. In their calculations, they used all events and jumps within the catalogs, 142 
not just record-breaking ones.  143 

Verdon and Bommer (2021) applied the MJL approach to a compilation of 22 instances of hydraulic 144 
fracturing-induced seismicity, and Watkins et al. (2013) applied the MJL approach to 27 cases of 145 
seismicity induced by WWD and NGS. Like Cao et al. (2020), Verdon and Bommer (2021) and 146 
Watkins et al. (2023) used the jumps between all events (when sorted into size order), not just the 147 
jumps to new record-breaking events.  148 

Cao et al. (2023) applied the MJL approach to 15 cases of induced seismicity (mostly consisting of the 149 
same hydraulic fracturing sequences examined by Verdon and Bommer, 2021), but using as input to 150 
their model only the population of jumps that created new record-breaking events. Schultz et al. 151 
(2023a) applied the MJL approach to the sequence of WWD-induced seismicity at Musreau Lake, 152 
Alberta. Like Cao et al. (2023), they used as inputs only the population of jumps that created new 153 
record-breaking events.  154 

For all the above studies, the assessment of model performance has been somewhat unsystematic. 155 
Mendecki (2016) demonstrated his methods by application to a single example of mining-induced 156 
seismicity but did not make any quantitative assessment of model performance. Likewise, Cao et al. 157 
(2020) and Schultz et al. (2023a) simply compared the evolution of the observed earthquakes with the 158 
changing MMAX forecasts, noting that the models generally did a reasonable job of fitting the observed 159 
magnitudes. Verdon and Bommer (2021) and Watkins et al. (2023) produced cross-plots of modelled 160 
versus observed magnitudes for the largest event within each sequence, while Cao et al. (2023) 161 
compared modelled and observed magnitudes each time a new largest event occurred. These plots 162 
showed evidence for correlation between observed and modelled magnitudes, but also showed that at 163 
times the MJL model can underestimate the size of the largest event. As such, there has not yet been 164 
any effort to systematically compare the performance of these methods, either between the different 165 
methods, or for the same method between different sites.  166 

1.3. Study objectives 167 

The objective of this study is to provide a systematic assessment of the performance of the Mendecki 168 
(2016) MUL and MJL methods as applied to a large number of cases of injection-induced seismicity. 169 
Specifically, we compare the use of earthquake magnitudes versus potencies and we compare the use 170 
of all events and jumps versus the events and jumps that represent new record-breaking events. In 171 
doing so, we investigate influence of these different formulations on the resulting MMAX forecasts, and 172 
we quantitatively compare their respective performance.  173 

Mendecki’s (2016) formulations produce a single value for MMAX. In many cases it may be more 174 
appropriate to produce a probability distribution for the forecast MMAX. As described above, where 175 
systematic differences in model performance are found, observations across a large number of sites 176 
could be used to define an empirically constrained probability distribution for MMAX. For instance, if 177 
one approach was found to systematically underestimate MMAX, while another method was found to 178 
systematically overestimate MMAX, then these two values could be used to estimate upper and lower 179 
bounds for the expected MMAX. Having produced quantitative assessments of model performance in the 180 



  6 

first part of our paper, we go on to investigate whether the different approaches to forecasting MMAX 181 
can be combined to produce an empirically constrained probabilistic forecasting approach.   182 

2. METHODS 183 

Mendecki (2016) described two approaches to forecasting induced seismicity magnitudes using the 184 
order statistics theory of Cooke (1979). For a random sample of n magnitude (or potency) observations, 185 
MO, drawn from a constant underlying distribution, the upper limit for future such observations can be 186 
estimated as: 187 
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where MO
i represents the event magnitudes (or potencies) sorted into size order, from smallest to 189 

largest, such that MO
n is the largest event observed to date, which we refer to as MO

MAX.  190 

Alternatively, one can consider the jumps in magnitude (or potency) between events, ΔMO, since an 191 
estimate for the next largest event can be obtained by adding the estimated maximum jump, ΔMMAX, 192 
to the observed largest event. We refer to this estimate as the “jump-limited” maximum magnitude: 193 
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The estimated maximum magnitude (or potency) jump is calculated using the same formulation as 195 
Equation 1, but applied to the distribution of magnitude jumps:  196 
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where ΔMO
i represents the magnitude (or potency) jumps ordered from smallest to largest, and nj is 198 

the number of jumps.  199 

2.1. Modelling approaches 200 

Equations 1 – 3 describe two approaches to estimating MMAX, which we refer to hereafter with the 201 
subscripts MUL and MJL, respectively. These calculations can be applied to observed magnitude or 202 
potency values. Hereafter, we refer to results computed using magnitudes with the subscript MM, and 203 
results computed using potencies with the subscript MO.  204 

As described in Section 1.2, these methods have been applied using the full earthquake catalogs, where 205 
MO

i represents the entire event population sorted into size order and ΔMO
i represents the magnitude 206 

(or potency) jump between every event when the entire population is sorted into magnitude order, with 207 
ΔMO

i then being sorted into size order. Alternatively, one can use an event population that consists 208 
only of the record-breaking events as they appear in the sequence, where MO

i represents the record-209 
breaking events sorted into size order, and ΔMO

i represents the jumps between the record-breaking 210 
events. Hereafter, we refer to calculations using the entire event population resorted into size order 211 
with the subscript AE (for all events) and calculations using only the record-breaking events as RB (for 212 
record-breaking events).  213 

We note that dedicated microseismic monitoring arrays often produce large numbers of events (e.g., 214 
Verdon and Budge, 2018), but even for a very large catalog ranging across several orders of magnitude 215 
we typically observe only a few record-breaking events. Thus, the methods based on record-breaking 216 
versus all events represent different approaches to statistical estimates. By definition, the record-217 
breaking method excludes aftershocks as these are smaller than, and occur after, a mainshock and 218 
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therefore do not contribute to record-breaking series. However, the approach based on all events 219 
includes aftershocks in the evaluation of the maximum magnitude while representing whole sequence.  220 

These combinations mean that we have a total of 8 possible ways in which MMAX can be estimated. 221 
These are summarised in Table 1. In the following section we introduce the datasets that we use to 222 
assess the performance of each method, before presenting our results in Section 4.   223 

 224 

Table 1: Summary of different model implementations used for MMAX forecasting 225 
Model 

No. 
Model 
Name 

Upper Limit [UL] or Jump-
Limited [JL] formula 

All Events in Size Order [AE] 
or Record Breaking only [RB] 

Magnitudes [MM] or 
Potencies [MO] 

1 MUL_RB_MM UL RB MM 
2 MUL_RB_MO UL RB MO 
3 MUL_AE_MM UL AE MM 
4 MUL_AE_MO UL AE MO 
5 MJL_RB_MM JL RB MM 
6 MJL_RB_MO JL RB MO 
7 MJL_AE_MM JL AE MM 
8 MJL_AE_MO JL AE MO 

 226 

3. DATASETS 227 

3.1. Oklahoma and southern Kansas 228 

WWD in central and northern Oklahoma and southern Kansas (OK-KS hereafter) has increased 229 
significantly over the past two decades, driven primarily by a move towards hydrocarbon production 230 
from reservoirs with high water fractions, with the produced water then requiring disposal (Rubenstein 231 
and Mahani 2015). WWD has caused significant amounts of induced seismicity (Weingarten et al. 232 
2015), including some of the largest induced events to have ever been recorded from fluid injection 233 
activities, such as the M 5.6 Prague (Keranen et al., 2013) and M 5.8 Pawnee (Yeck et al., 2017) 234 
sequences. Induced seismicity in Oklahoma has also been caused by hydraulic fracturing (e.g., 235 
Holland, 2013; Skoumal et al., 2018; Verdon and Rodríguez-Pradilla, 2023), particularly in the 236 
Anadarko Basin. However, our focus here is on central and northern Oklahoma and southern Kansas, 237 
where the bulk of the seismicity is caused by WWD.  238 

In this study we use the earthquake catalog published by Park et al. (2022), who used the PhaseNet 239 
deep learning model (Zhu and Beroza, 2019) to detect earthquakes recorded by publicly available 240 
seismic networks in the OK-KS region. The deep learning model produced a significant increase in 241 
event detection, improving detection thresholds by at least 1 magnitude unit over pre-existing 242 
earthquake catalogs for the region. We adopt a minimum magnitude of completeness of MC = 1.5, 243 
based on the magnitude-frequency relationships plotted in Figure 2 of Park et al. (2022). To estimate 244 
potencies from the given magnitudes, we adopt a single value of G = 20 GPa (this value is adopted for 245 
all sequences in our study).  246 

There are 70 earthquakes in the Park et al. (2022) catalog with magnitudes ≥ 4.0. Some of these events 247 
occur in close proximity to each other such that they can be considered to be part of the same sequence. 248 
Through examination of the spatial and temporal evolution of the seismicity in OK-KS, we identified 249 
24 individual sequences in which induced event magnitudes reached or exceeded M 4.0 (see Figure 250 
1). We take these 24 sequences as test datasets for our analysis. For each case, we define a 20 × 20 km 251 
square around the M ≥ 4.0 event (or the largest event for sequences which contain more than one 252 
M ≥ 4.0 event). All earthquakes within this square are taken as representing part of the sequence and 253 
used to perform our MMAX forecasting. The M ≥ 4.0 events, and the 20 × 20 km squares around them, 254 
are shown in Figure 1.  255 
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 256 

Figure 1: Map of the OK-KS study area. Black dots show all earthquakes with M ≥ 1.5 and coloured 257 
circles show events with M ≥ 4.0. The solid boxes show the 20 × 20 km blocks around each of the 258 

sequences containing M ≥ 4.0 events, while the dashed boxes show 20 × 20 km blocks in which 500 259 
events were recorded with no M ≥ 3.5 events. The box colours used in this figure correspond to the 260 

marker colours used in Figure 3.  261 

 262 

In testing induced seismicity forecasting models, there can be a tendency to focus on cases where 263 
larger magnitude events occurred, since these cases tend to attract the most attention (from the public 264 
and policy makers, as well as from academics). However, comprehensive testing should include 265 
sequences that did not reach larger magnitudes, since our objective is to develop models that can 266 
differentiate between sequences that do, and that do not, escalate to higher magnitude events. Hence, 267 
in addition to the 24 sequences with M ≥ 4.0 events, we identify the same number of cases where 268 
magnitudes did not exceed M 3.5, selecting twenty-four 20 × 20 km blocks at random within the study 269 
area that contained at least 500 events but no events with M ≥ 3.5. To do so, we randomly generated 270 
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block positions and rejected those that did not meet these criteria, continuing until we had 24 cases. 271 
The 24 blocks without larger magnitude events are also shown in Figure 1.  272 

3.2. Permian Basin, western Texas 273 

Induced seismicity has been recognised in the Permian Basin of western Texas (WTX hereafter) since 274 
the 1970s (Davis and Pennington, 1989). Rates of seismicity in the basin have increased substantially 275 
since 2015 (Skoumal et al., 2020), associated with WWD and hydraulic fracturing. Given the co-276 
location of these activities, distinguishing causality between WWD and hydraulic fracturing can be 277 
challenging, although the bulk of the seismicity is thought to have been caused by WWD (Grigoratos 278 
et al., 2022). Three M ≥ 5.0 events have been induced in this basin: the March 2020 M 5.0 event near 279 
to the city of Pecos in Reeves County (Skoumal et al., 2021), the November 2022 Coalson Draw M 5.4 280 
event in western Reeves County, and the December 2022 M 5.2 event in Martin County, just to the 281 
north of the city of Midland (Hennings and Young, 2023).  282 

In this study we use the TexNet earthquake catalog (Savvaidis et al., 2019), with data running from 283 
the start of 2017 until April 2023. We adopt a minimum magnitude of completeness of MC = 2.0 from 284 
inspection of the magnitude-frequency relationship for this catalog. There are 48 events for which 285 
M ≥ 4.0 (Figure 2). Our examination of the temporal and spatial evolution of the seismicity identified 286 
11 individual sequences in which induced event magnitudes reached or exceeded M 4.0. Much like for 287 
our OK-KS datasets, we define 20 × 20 km squares around each sequence and use all events within 288 
these blocks to perform our MMAX forecasting. We then identify an equal number (i.e., 11) of 20 × 20 289 
km blocks containing at least 100 events (we use a lower criterion here recognising the lower number 290 
of events in the TexNet catalog compared to the Park et al. (2022) catalog for OK-KS) but no events 291 
larger than M 3.5, in order to test MMAX model performance for cases where larger magnitude events 292 
did not occur.     293 

3.3. Watkins et al. (2023) sequences 294 

Watkins et al. (2023) published MMAX forecasts using the MJL_SO_MM formulation for more than 20 295 
individual sequences of WWD and NGS-induced seismicity. Some of the Watkins et al. (2023) 296 
sequences are already included in our OK-KS and WTX datasets described in the previous sections 297 
(Reeves and Cogdell in Texas, Cushing, Fairview, Guthrie-Langston, Pawnee and Prague in 298 
Oklahoma, Milan and Harper in Kansas), while for some older sequences with lower levels of 299 
monitoring, the largest events occurred before a sufficient number of events were available to compute 300 
MMAX estimates (e.g., the Cordel sequence in Alberta). This left 16 additional sequences which we were 301 
able to include in our analysis, including: the Azle-Reno, Dallas-Fort Worth, Venus, Timpson and 302 
Irving sequences in eastern Texas (Hennings et al., 2021; Frohlich et al., 2014); the Guy-Greenbrier 303 
sequence in Arkansas (Horton, 2012); the Youngstown sequence in Ohio (Kim, 2013); the Paradox 304 
Valley, Greeley and Raton Basin sequences in Colorado (Block et al., 2014; Yeck et al., 2016; Nakai 305 
et al., 2017); the Eagle West, Graham, and Musreau Lakes sequences in western Canada (Horner et 306 
al., 1994; Hosseini and Eaton, 2018; Li et al., 2022); the Rongchang sequence in the Sichuan Basin 307 
(Wang et al., 2020); the Castor project in the Gulf of Valencia, Spain (Cesca et al., 2021); and the 308 
Puerto Gaitán sequence, Colombia (Molina et al., 2020). For each of these sequences, we use the 309 
earthquake catalogs published in the Supplementary Materials of Watkins et al. (2023). We refer to 310 
these sequences as the W23 cases hereafter. 311 

3.4. Application 312 

For the OK-KS and WTX datasets we compute MMAX values at intervals of 0.5 months, starting at the 313 
time when at least 10 events above the magnitude of completeness within the sequence have been 314 
recorded. For the W23 sequences, the timespans of each sequence are highly variable – we therefore 315 
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compute MMAX values at 1,000 evenly-spaced intervals between the first and final event within each 316 
sequence. For each time interval we compute modelled maximum magnitude values, MM

MAX, using all 317 
the events in the sequence that occurred prior to the given time.  318 

Our objective is to assess the forecast performance as each sequence evolves. We therefore make 319 
comparisons between observed and modelled magnitudes each time there is a new largest event within 320 
the sequence. Each new largest event within the sequence is treated as an observed maximum 321 
magnitude event, MO

MAX. The MO
MAX values are compared against the MM

MAX values calculated at the 322 
timestep prior to when the MO

MAX event occurred.  323 

 324 

 325 

Figure 2: Map of the western Texas study area. Black dots show all earthquakes with M ≥ 1.0 and 326 
coloured circles show events with M ≥ 4.0. The solid boxes show the 20 × 20 km blocks around each 327 
of the sequences containing M ≥ 4.0 events, while the dashed boxes show 20 × 20 km blocks in which 328 
100 events were recorded with no M ≥ 3.5 events. The box colours used in this figure correspond to 329 

the marker colours used in Figure 4. 330 

 331 

4. RESULTS 332 

Figures 3, 4 and 5 show our results, comparing the observed and forecast MO
MAX and MM

MAX values, 333 
using each of the 8 methods described in Table 1, for the sequences from OK-KS (Figure 3), WTX 334 
(Figure 4), and the W23 sequences (Figure 5). In total we have applied our models to 86 total sequences 335 
(48 in OK-KS, 22 in WTX, 16 from W23), with a combined total of 331 individual record-breaking 336 
events within these sequences (205 from OK-KS, 72 from WTX, 54 from W23). 337 



  11 

 338 

Figure 3: Results for OK-KS sequences comparing observed and modelled magnitudes for each of 339 
the MMAX forecasting methods listed in Table 1. Marker colours correspond to sequences within each 340 

box shown in Figure 1.  341 

 342 

 343 

Figure 4: Results for WTX sequences comparing observed and modelled magnitudes for each of the 344 
MMAX forecasting methods listed in Table 1. Marker colours correspond to sequences within each 345 

box shown in Figure 2.  346 

 347 

We quantify the model performance using several metrics. We compute the root-mean-squared (RMS) 348 
error between modelled and observed magnitudes, σRMS, the Pearson correlation coefficient between 349 
modelled and observed magnitudes, r, and the line of (least squares) best-fit, m. A well-performing 350 
model should minimise σRMS and maximise r, and have a best-fit line close to 1.0, implying a 1:1 351 
relationship between MM

MAX and MO
MAX. Additionally, in most applications we anticipate that MMAX 352 

forecasting will be used to guide operational decision making in order to avoid unwanted large events. 353 
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It is therefore of particular importance that models do not make large underpredictions, such that the 354 
actual seismicity significantly exceeds what has been forecast by the model. We therefore compute 355 
NUP, the percentage of MO

MAX instances where the forecast MM
MAX value was a significant 356 

underprediction with MM
MAX < MO

MAX – 0.5. These metrics are listed in Table 2 for the OK-KS, WTX 357 
and the W23 sequences respectively.   358 

 359 

 360 

Figure 5: Results for the W23 sequences comparing observed and modelled magnitudes for each of 361 
the MMAX forecasting methods listed in Table 1.  362 

 363 

In general, we observe strong correlation between the modelled and observed MMAX values, implying 364 
that these methods all provide useful forecasting information for induced seismicity magnitudes, and 365 
could therefore be used as part of a decision-making strategy to manage induced seismicity. The 366 
performance of these models is generally better than that found by Verdon et al. (2023) for commonly 367 
used volume-based forecasting models, having higher correlation coefficients between modelled and 368 
observed magnitudes, lower RMS errors (except for the MUL_RB_MM and MUL_RB_MM models, see below), 369 
and fewer cases where models produced significant underpredictions of upcoming magnitudes.     370 

More detailed inspection of Figures 3 – 5 and Table 2 leads us to the following conclusions, all of 371 
which are consistent between the OK-KS, WTX, and W23 sequences.  372 

Using re-sorted magnitudes or just record-breaking events does not significantly change 373 
forecasting performance. The use of the entire earthquake catalog, versus solely using record-374 
breaking events (or jumps to record-breaking events), was a key point of difference between Cao et al. 375 
(2020), Verdon and Bommer (2021) and Watkins et al. (2023) on the one hand, and Cao et al. (2023) 376 
and Schultz et al. (2023a) on the other. However, comparison of panels (a) vs (c), (b) vs (d), (e) vs (g), 377 
and (f) vs (h) of Figures 3 – 5 show that these different implementations in fact produce very similar 378 
results. Examination of Equations 1 and 3 show that this outcome is unsurprising, since only the first 379 
few terms of the weighting applied to the summation of the magnitudes (or jumps), given by:  380 
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,        (4) 381 

are significant (Mendecki, 2016). The first weightings correspond to the largest magnitudes (or 382 
magnitude jumps), which tend to be magnitudes (or jumps) that produce record-breaking events. 383 
Figure 6 plots the value of W as a function of i, in this case setting n = 20. The weighting term drops 384 
to values of 0.01 or less after the 4th term in the summation (the weighting applied to the 4th-largest 385 
magnitude or jump). 386 

 387 

Table 2: Performance metrics for OK-KS, WTX and W23 sequences. 388 
Model σRMS r m NUP [%] 

OK-KS 
MUL_RB_MM 1.84 0.86 1.27 0 
MUL_RB_MO 0.41 0.86 0.76 14.2 
MUL_AE_MM 1.67 0.86 1.24 0 
MUL_AE_MO 0.41 0.85 0.76 14.2 
MJL_RB_MM 0.93 0.75 1.11 3.4 
MJL_RB_MO 0.37 0.87 0.82 12.7 
MJL_AE_MM 0.47 0.81 0.85 7.3 
MJL_AE_MO 0.41 0.85 0.78 14.6 

WTX 
MUL_RB_MM 2.06 0.90 1.23 0 
MUL_RB_MO 0.32 0.92 0.78 12.5 
MUL_AE_MM 1.84 0.91 1.26 0 
MUL_AE_MO 0.32 0.92 0.78 12.5 
MJL_RB_MM 0.89 0.83 1.35 2.8 
MJL_RB_MO 0.32 0.91 0.81 12.5 
MJL_AE_MM 0.54 0.80 0.98 5.6 
MJL_AE_MO 0.32 0.91 0.79 12.5 

W23 
MUL_RB_MM 2.37 0.93 1.62 0 
MUL_RB_MO 0.34 0.94 0.93 11.1 
MUL_AE_MM 2.43 0.92 1.66 0 
MUL_AE_MO 0.34 0.94 0.93 11.1 
MJL_RB_MM 0.81 0.83 1.04 3.7 
MJL_RB_MO 0.34 0.93 0.94 11.1 
MJL_AE_MM 0.59 0.85 1.05 3.7 
MJL_AE_MO 0.34 0.94 0.93 9.3 

 389 

Upper limit models using magnitude provide a credible upper limit. The MUL_AE_MM and MUL_RB_MM 390 
models (panels (a) and (c) in Figures 3 – 5) did not produce any significant underpredictions (NUP = 0). 391 
This is notable given that we have applied it to 86 individual earthquake sequences. Hence, the 392 
UL_MM values (upper limit calculations using magnitudes) do seem to provide a credible upper limit 393 
to induced earthquake magnitudes.  394 

However, while these values never produced underpredictions, they did not provide a good fit to 395 
observations overall, tending to produce significant overpredictions in most cases. As a result, the 396 
MUL_AE_MM and MUL_RB_MM models gave the largest σRMS values, and best-fit relationships with m 397 
significantly higher than 1.0. That said, the correlation coefficients for the MUL_AE_MM and MUL_RB_MM 398 
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models are not significantly worse than those of other models, implying that the scatter between 399 
modelled and observed magnitudes is no worse than for the other models, just the fit is not along the 400 
1:1 line, resulting in systematic overprediction.   401 

   402 

 403 

Figure 6: Value of the weighting W applied within the summation term in Equations 1 and 3 (as 404 
defined in Equation 4) as a function of i, where n is set at 20.  405 

 406 

Next record-breaking models using magnitudes produce the highest scatter. Although the 407 
MJL_AE_MM and MJL_AE_MM models (panels (e) and (g) in Figures 3 – 5) produced reasonable fits between 408 
observed and modelled magnitudes, with m values close to 1.0, these models had the lowest correlation 409 
coefficients of all the models, and the highest σRMS values with the exception of the overpredicting 410 
MUL_AE_MM and MUL_RB_MM models, as described above. The MJL_AE_MM and MJL_RB_MM models therefore 411 
produced the highest scatter between modelled and observed magnitudes and may therefore have the 412 
least utility in forecasting. This is ironic given that this approach has been the most widely used to 413 
date, forming the basis of results presented by Cao et al. (2020; 2023), Verdon and Bommer (2021), 414 
Watkins et al. (2023) and Schultz et al. (2023a).    415 

Potency-based models have the least scatter, but significantly underpredict on occasion. All four 416 
of the models that used earthquake potencies, MUL_AE_MO, MUL_RB_MO, MJL_AE_MO, and MJL_RB_MO (panels 417 
(b), (d), (f) and (h) in Figures 3 – 5) produced very similar results. These models had the lowest σRMS 418 
values and highest correlation coefficients, indicating that these models had low scatter and the closest 419 
match between modelled and observed magnitudes. However, these models also produced the largest 420 
number of underpredictions, with between 10 – 15 % of events being underpredicted by more than 0.5 421 
magnitude units. We surmise that in most cases where sequences are evolving relatively gently, the 422 
potency-based models perform well. However, they do not perform as well in capturing the more 423 
unusual sequences where a sharp increase in magnitudes takes place. 424 

5. DISCUSSION 425 

5.1. Towards an empirically constrained probabilistic model 426 

Our results show that the upper limit magnitude-based models, MUL_AE_MM and MUL_RB_MM, provided 427 
credible upper bounds for the actual event magnitudes, having no significant underpredictions after 428 
application to a large number of sequences. However, in most cases these models overpredicted the 429 
observed events. In contrast, the potency-based models (MUL_AE_MO, MUL_RB_MO, MJL_AE_MO, and 430 
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MJL_RB_MO) generally produced a good fit to the observed magnitudes, but occasionally produced 431 
significant underpredictions.  432 

From this, it is reasonable to propose a composite approach to forecasting event magnitudes where 433 
MUL_AE_MM or MUL_RB_MM is used provide an upper bound to the expected magnitude, MUB, and 434 
MUL_AE_MO, MUL_RB_MO, MJL_AE_MO, or MJL_RB_MO is used to provide a lower bound for the expected 435 
magnitude, MLB. Hereafter, we use MUL_RB_MM for the upper bound, and MJL_AE_MO for the lower bound.  436 

The probability distribution of event magnitudes between these bounds can be estimated through 437 
empirical calibration with our observed seismicity. For each event, we normalise the observed event 438 
magnitude relative to the MLB and MUB values at the time of the event’s occurrence:  439 

 𝑀.
$ = +"#$

% (+&'
+('(+&'

         (5) 440 

We then examine the distribution of these normalised magnitudes – where do events typically fall with 441 
respect to the upper and lower magnitude bounds? Our results for each of our studies are shown in 442 
Figure 7.  443 

 444 

 
(a) 

 
(b) 

 
(c) 

Figure 7: Distribution of normalised observed magnitudes MO
N (bars) where the observed 445 

magnitudes are normalised relative to the modelled upper and lower bound estimates, for the OK-KS 446 
(a), WTX (b), and W23 (c) sequences. The red dashed lines show the best-fit shifted lognormal 447 

distribution for each case, while the blue dashed lines show a shifted lognormal distribution with 448 
μLN = -1.4 and σLN = 0.6.    449 

 450 

The distributions of MO
N are remarkably consistent between the three sets of sequences that we studied. 451 

Most values are close to 0, i.e., they match the modelled lower bound values, MO
MAX = MLB. However, 452 

the distribution has a tail of higher values extending towards 1, i.e., where observed magnitudes reach 453 
towards the higher bound values, MO

MAX = MUB.  454 

We find that the observed MO
N distributions are well modelled by a shifted lognormal distribution. The 455 

red curves in Figure 7 show the best-fit lognormal curves for each set of sequences after applying a 456 
shift of 0.2 units to MO

N. The best fit lognormal means (μLN) and deviations (σLN) for the OK-KS, WTX 457 
and W23 sequences are, respectively, μLN = [-1.4, -1.41, -1.37] and σLN = [0.59, 0.43, 0.54].  458 

The similarities of these values suggest a fundamental underlying property is controlling the 459 
distribution of observed magnitudes relative to the modelled upper and lower bounds. We further 460 
investigate this with some synthetic testing. We generate 1,000 earthquake sequences from an 461 
underlying Gutenberg-Richter relationship with a b value of 1.0. For each synthetic sequence, the total 462 
number of events is drawn at random from a uniform distribution between 500 – 10,000, and the 463 
minimum magnitude is drawn random from a uniform distribution between 0.5 – 2.5. These 464 
distributions reflect the range of event numbers and magnitudes of completeness from our compilation 465 
of observed induced seismicity sequences. The timing of each event in the sequence is drawn at random 466 
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from a range from 0 – 1. Having created synthetic earthquake sequences, we then apply the MUB and 467 
MLB calculations as done for our real cases, computing these values at the time before each new largest 468 
event within the sequence is observed.  469 

Our results are shown in Figure 8. The distribution of MUB and MLB values relative to the ‘observed’ 470 
(i.e., simulated) magnitudes is consistent with the observed cases presented in Figures 3 – 5, with the 471 
MUB values generally larger than the observed magnitudes and very rarely producing underestimates 472 
while the MLB values are generally close to the observed values, but occasionally produce significant 473 
underestimations. Figure 8b shows the distribution of MO

N values for our synthetic data, which again 474 
look very similar to our observed sequences, being well described by a shifted lognormal distribution 475 
with a shift of -0.2 units, and μLN = -1.4 and σLN = 0.6. This modelled distribution is shown by the blue 476 
dashed curve in Figure 8b, and is also reproduced as a blue dashed curve in Figures 7(a-c) to facilitate 477 
comparison with the observed MO

N distributions.  478 

 479 

  Figure 8: Results for synthetic seismicity sequences. In (a) we compare the ‘observed’ (i.e., 480 
simulated) magnitude values with the modelled MUB (red) and MLB (green) values. In (b) we plot the 481 

distribution of normalised magnitude values (MO
N) (bars), and the best-fit shifted lognormal 482 

distribution (blue dashed line).  483 

 484 

As can be seen in Figure 7, the shifted lognormal distribution produced by our synthetic modelling 485 
provides a good match to the observed values. These results, and in particular the consistency found 486 
for MO

N between our different case studies and our synthetic models, enables us to construct an 487 
empirically constrained probabilistic model for induced seismicity forecasting using extreme value 488 
estimators. For a given sequence of seismicity, we compute the MUB and MLB bounds at a given time. 489 
Note that, given the shifted lognormal distribution for MO

N that we have adopted, MO
N can go below a 490 

value of 0, and above a value of 1, so MUB and MLB are not truly bounds since there are low but non-491 
zero probabilities that MO

MAX < MLB or MO
MAX > MUB. However, we refer to them as bounds nonetheless 492 

since the majority of events will fall between these values.   493 

Having computed MUB and MLB, we can compute the probability for the next largest magnitude event 494 
that will occur in the sequence. For a given magnitude, we use Equation 5 to normalise that magnitude 495 
relative to MUB and MLB, and then estimate the probability of occurrence for that event from a shifted 496 
lognormal distribution, with a shift of -0.2 units, μLN = -1.4, and σLN = 0.6.     497 

 
(a) 

 
(b) 
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5.2. Application to out-of-sample cases 498 

We demonstrate this approach by application to two notable cases of induced seismicity: from 499 
hydraulic fracturing at the Preston New Road PNR-2 well in Lancashire, England in 2019 (Kettlety et 500 
al., 2021), and from seismicity associated with WWD activities in northwestern Alberta, near to the 501 
town of Peace River (Schultz et al., 2023b). The PNR-2 sequence is notable because its occurrence led 502 
the UK government to impose a moratorium on hydraulic fracturing, primarily because of the 503 
perceived inability to “accurately predict the probability or magnitude of earthquakes linked to 504 
fracking operations” (BEIS, 2019).  505 

The Peace River sequence reached a magnitude of M 5.6 in November 2022, making it the largest 506 
magnitude induced event in the Western Canada Sedimentary Basin. This sequence is useful for our 507 
purposes since, given when it occurred, it was not included in the sequences compiled by Watkins et 508 
al. (2023), and so it represents an out-of-sample test, since the sequences in W23 were used to generate 509 
our empirically constrained distribution of MO

N.  510 

For the PNR-2 sequence, we use the corrected moment magnitudes published by Kettlety and Butcher 511 
(2022) – note that these MW values are different from the ML values published by Kettlety et al. (2021).  512 
For the Peace River sequence, we use earthquakes from the Alberta Geological Survey database (AGS, 513 
2020).       514 

Our results are shown in Figure 9, where the observed seismicity is compared with the forecast values. 515 
The solid lines in Figure 9 show the magnitude with a 50 % chance of exceedance, M50, while the 516 
dashed lines show M95 and M05 (i.e., the magnitude that has a 95 % chance of being exceeded, and the 517 
magnitude that has a 5 % chance of being exceeded).  518 

 519 

 
(a) 

 
(b) 

Figure 9: Application of the empirically constrained forecasting model to the Preston New Road 520 
PNR-2 (a) and Peace River (b) sequences. Observed events are marked with grey dots. The solid line 521 
marks M50, while the dashed lines mark M05 and M95. For PNR-2, the bursts of seismicity associated 522 

with each discrete hydraulic fracturing interval (Stages 1-7) are marked with grey arrows.   523 

 524 

For PNR-2, the M 2.8 event is well within the forecast range, and close to the M50 value at the time it 525 
occurred. Hydraulic fracturing at PNR-2 was conducted as a series of discrete injection stages, 526 
typically lasting between 1 – 2 hours, with only one injection stage taking place each day. Stage 7 was 527 
the last stage to have been stimulated, with the M 2.8 event occurring roughly 72 hours after this stage 528 
had been completed (Kettlety et al., 2021). The forecast values prior to Stage 7 are therefore of 529 
particular interest since these values could have informed the operational decision to perform this 530 
stage. At the time that injection of Stage 7 began, the likelihood of reaching or exceeding M 2.8 was 531 
12 %. The forecasting model therefore provides a reasonable characterisation of the hazard at the time 532 
that the decision to proceed with Stage 7 was made.    533 

S1
S2

S3 S4
S5

S6 S7
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Interestingly, the event that most exceeds the forecast is the M 1.9 event that followed Stage 6. At the 534 
start of injection of Stage 6, the likelihood of reaching or exceeding M 1.9 was only 1 %. Kettlety et 535 
al. (2021) identified that Stage 6 saw a significant change in geomechanical behaviour in the reservoir, 536 
with microseismicity beginning to occur along the fault structure that ultimately hosted the M 2.8 537 
event. Kettlety et al. (2021) interpreted the microseismicity prior to Stage 6 as being associated with 538 
hydraulic fracture propagation (and the reactivation of some natural fracture networks), whereas 539 
microseismicity from Stage 6 onwards begins to represent the onset of reactivation of a critically 540 
stressed fault. This highlights one of the challenges with induced seismicity forecasting – where a 541 
sudden change in the underlying geomechanical behaviour takes place, events from prior to this change 542 
may not be useful in forecasting subsequent behaviour. For PNR-2, the microseismicity associated 543 
with hydraulic fracture propagation during the earlier stages does not do a good job of forecasting what 544 
happens as the fault begins to reactivate. Once the fault begins to reactivate the forecasting model 545 
using the seismicity from this point onwards does a good job of forecasting the subsequent seismicity 546 
that then develops. This observation shows that care should be taken to fully interpret and understand 547 
the geomechanical behaviours that can be manifested in microseismic event observations when using 548 
catalogs to forecast induced seismicity hazard.  549 

For the Peace River case, the forecast values are stable for the duration of the sequence. The M 5.6 550 
event that occurs is close to the M05 value, indicating a 5 % likelihood of this magnitude being reached 551 
or exceeded.         552 

5.3. Time dependent forecasting 553 

The forecasting methods developed here do not provide any estimate of whether a new record-breaking 554 
event will occur and, if so, when it will occur. The timing of the next record-breaking event could be 555 
estimated from the growing number of earthquakes within a sequence. Mendecki (2016) shows that 556 
the expected number of record-breaking events, Nrb, in a population of n events can be approximated 557 
as: 558 

 𝑁/0 ≈ ln(𝑛) + 0.577215,        (6)   559 

with the variance given by: 560 

 Var(𝑁/0) = ln(𝑛) − 1.0677.        (7) 561 

The number of record-breaking events relative to the total number of events within the sequence could 562 
therefore be used to indicate whether another record-breaking event might be imminent. Further 563 
investigation of this possibility is clearly merited.    564 

Perhaps more importantly, the methods developed here, which are based on the concept of record-565 
breaking events, imply that MMAX for a sequence of induced seismicity will be ever-increasing. In 566 
practice, many sequences of induced seismicity generated by long-term injection have shown time-567 
dependent behaviour where magnitudes increased during the first years of injection, but then stabilised 568 
and decreased over time (Watkins et al., 2023; Verdon et al., 2023).  569 

As sequences stabilise and abate, magnitude forecasts based on extreme value estimators will cease to 570 
be appropriate. Clearly, some means of estimating the point at which the rates and magnitudes of 571 
induced seismicity are no longer increasing is required. One method may be to compare the numbers 572 
of record-breaking events when the sequence is run forwards versus when the sequence is run in a 573 
time-reversed order (Mendecki, 2016). If the earthquake sequence is sampling from an underlying 574 
stationary distribution, then we would expect the same number of record-breaking events whether the 575 
sequence is run forwards or backwards. If there are significantly more record-breaking events when 576 
the sequence is run forwards, then this would imply that the hazard is increasing, while if there are 577 
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significantly more record-breaking events when the sequence is run in reverse, then this would imply 578 
that the hazard is abating. Again, further investigation of this concept is clearly merited.    579 

6. CONCLUSIONS 580 

We have assessed the performance of induced seismicity forecasting models for MMAX using methods 581 
based on extreme value estimators. These models can be implemented in a number of different ways, 582 
and we have quantitatively compared the performance of these implementations. We compiled a 583 
database of over 80 individual sequences of induced seismicity against which comparisons of model 584 
performance were made. We found that using all events within a catalog or just the record-breaking 585 
events made little difference to the forecasting results, since the models are primarily sensitive to the 586 
largest magnitude events in the sequence.  587 

Estimates of MMAX using the upper limit method with event magnitudes tended to overestimate the 588 
observed magnitudes. However, unlike other models, this model never significantly underpredicted 589 
the observed seismicity, so it has use in defining an upper bound for MMAX. The models which used 590 
earthquake potency instead of magnitude produced the closest overall fit to the observed magnitudes, 591 
but on occasion did produce significant underestimates of the observed magnitudes. The potency-592 
based models seldom produced overpredictions of the observed magnitudes.  593 

Based on these observations, we conclude that the upper limit magnitude-based model and the jump-594 
limited potency-based models can be combined to give upper and lower bounds for the upcoming 595 
events within an induced seismicity sequence. We found that most of the observed events were much 596 
closer to the lower bound magnitude estimates. We used this observation to define an empirically 597 
constrained probability distribution for expected magnitudes relative to the estimated upper and lower 598 
bounds. This distribution was consistent between the different populations of induced seismicity 599 
sequences compiled for our analysis, as well as for sequences that were generated synthetically.    600 

We applied this forecasting approach to two out-of-training-sample (i.e., not used in defining our 601 
empirically constrained distribution) sequences of induced seismicity. We find that in both cases our 602 
modelling approach does a good job of characterising the induced seismicity that occurred. However, 603 
the example from PNR-2 again highlights one of the major challenges in forecasting induced 604 
seismicity: where rapid changes in the underlying geomechanical processes occur (such as a when a 605 
different fault begins to be perturbed), seismicity from earlier within the sequence may not be useful 606 
for forecasting once this change has occurred.    607 

 608 

Data and Resources 609 

The earthquake catalog for Oklahoma was sourced from Park et al. (2022), where the catalog is 610 
provided as a digital supplement. The earthquake catalog for Texas was sourced from the TexNet 611 
database at https://www.beg.utexas.edu/texnet-cisr/texnet/earthquake-catalog (last accessed 612 
14/02/2024). The earthquake catalogs for the sequences described by Watkins et al. (2023) are 613 
available as a digital supplement to that paper. The catalog for PNR-2 is available from the UK 614 
National Geoscience Data Centre at 615 
https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item173104 (last accessed 616 
14/02/2024). The catalog for the Peace River sequence was sourced from the Alberta Earthquake 617 
Dashboard at https://ags-aer.shinyapps.io/Seismicity_waveform_app/ (last accessed 14/02/2024).  618 
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