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ABSTRACT 26 

Induced seismicity magnitude models seek to forecast upcoming magnitudes of induced earthquakes during the 27 
operation of subsurface industries such as hydraulic fracturing, geothermal stimulation, wastewater disposal, 28 
and carbon capture and storage. Accurate forecasting models could guide operational decision-making in real 29 
time, for example operations could be reduced or paused if forecast models indicate that magnitudes may exceed 30 
acceptable levels. Robust and transparent testing of forecasting models is required if they are to be adopted by 31 
operators and regulators of such industries. We develop and test a suite of models based on extreme value 32 
estimators to forecast the magnitudes of upcoming induced seismic events based on observed seismicity. We 33 
apply these models to multiple induced seismicity cases from wastewater disposal in Oklahoma and in western 34 
Texas, as well as other cases of seismicity caused by subsurface fluid injection in North America, Europe, and 35 
China. In total, our testing dataset consists of more than 80 individual sequences of induced seismicity. We find 36 
that all the models produce strong correlation between observed and modelled magnitudes, indicating that the 37 
forecasting provides useful information about upcoming magnitudes. However, some models are found to 38 
systematically over-predict the observed magnitudes, while others tend to under-predict. As such, the combined 39 
suite of models can be used to define upper and lower estimators for the expected magnitudes of upcoming events, 40 
as well as empirically constrained statistical expectations for how these magnitudes will be distributed between 41 
the upper and lower values. We conclude by demonstrating how our empirically constrained distribution can be 42 
used to produce probabilistic forecasts of upcoming induced earthquake magnitudes, applying this approach to 43 
two recent cases of induced seismicity.      44 

45 
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1. INTRODUCTION 46 

Cases of induced seismicity have grown rapidly over the past two decades, associated with the growth 47 
and expansion of oilfield technologies such as hydraulic fracturing, wastewater disposal (WWD), and 48 
natural gas storage (NGS). Emerging low-carbon energy technologies such as geothermal and carbon 49 
capture and storage, which entail the injection of fluids into the subsurface, also carry the potential to 50 
generate induced seismicity.  51 

In severe cases, induced seismicity has caused damage to nearby buildings and infrastructure, and 52 
injuries to nearby people (e.g., Lee et al., 2019; Lei et al., 2019; Campbell et al., 2020). Even where 53 
induced event magnitudes are insufficient to cause damage, they are nevertheless a source of public 54 
concern (e.g., Evensen et al., 2022). A failure to adequately manage induced seismicity during 55 
development of subsurface geo-energy projects has led to the cancellation of individual projects and 56 
sites, and limits or even moratoria being imposed on entire industries. The need to develop methods to 57 
quantify induced seismicity hazard during operations, primarily by estimating what magnitudes of 58 
earthquakes are likely to be generated, is clear.   59 

Our aim in this study is to forecast the growth in earthquake magnitudes as induced seismicity 60 
sequences develop. We do this by tracking the magnitudes of new record-breaking events – events that 61 
are larger than any previous event within a sequence. We refer to these record-breaking magnitudes as 62 
MNRB hereafter. The growth of record-breaking events is of particular importance to operators and 63 
regulators of subsurface industries, since their magnitudes will usually determine the largest ground 64 
motions that are generated, and therefore the largest impact to nearby buildings, infrastructure, and 65 
people. If we are able to accurately forecast upcoming record-breaking magnitudes (and preferably, a 66 
probability distribution thereof), this could enable operators to make decisions to ensure the safety of 67 
their activities by, for example, reducing, ceasing, or applying other mitigation actions to their 68 
operations if it becomes likely that unacceptably high magnitudes will be generated.   69 

 70 

1.1. Observed versus physically possible induced seismicity magnitudes 71 

The largest record-breaking event within an induced seismicity sequence is, by definition, the largest 72 
event within that sequence. The largest observed magnitude during a sequence of induced seismicity 73 
(or a forecast thereof) is commonly referred to as MMAX (e.g., Hallo et al., 2014; van der Elst et al., 74 
2016; Eaton and Igonin, 2018; Verdon and Bommer, 2021). This is different from the MMAX parameter 75 
used in tectonic seismic hazard assessment, where it denotes the largest magnitude earthquake that is 76 
physically possible given the particular tectonic circumstances in question (e.g., Mueller, 2010). The 77 
largest possible magnitude represents a truncation to the Gutenberg and Richter (1944) magnitude-78 
frequency distribution (G-R hereafter). We refer to this truncation magnitude as MT

MAX to differentiate 79 
these terms.  80 

In making this distinction, we recognise that there is a fundamental difference between tectonic and 81 
induced seismicity (Bommer, 2022). Tectonic seismicity is driven by processes acting over geological 82 
timescales. Theoretically, all tectonic earthquake populations will eventually be truncated at MT

MAX if 83 
we are only able to wait for long enough observation times. In contrast, induced seismicity is driven 84 
by a human-induced perturbation that is of limited spatial extent and temporal duration. We are 85 
therefore able to observe induced sequences in their entirety, from start to finish. The largest induced 86 
event that actually occurs (MMAX) will probably not correspond to the largest possible event at which 87 
the G-R distribution would truncate (MT

MAX) unless a sufficient number of induced events have been 88 
generated (Zöller and Holschneider, 2016; van der Elst et al., 2016; Eaton and Igonin, 2018).  89 

There are some cases of induced seismicity, usually in settings with fairly specific and unique 90 
geomechanical conditions, where truncations of the G-R distribution have been observed (e.g., Verdon 91 
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et al., 2018). However, for most sequences of induced seismicity there has been little robust evidence 92 
of truncations to the G-R distribution at high magnitudes, as would be observed if MT

MAX were regularly 93 
being reached (e.g., van der Elst et al., 2016; Watkins et al., 2023). It is therefore reasonable in most 94 
cases to treat the magnitudes of an ongoing induced seismicity sequence as being drawn from an 95 
unbounded G-R distribution unless specific evidence to the contrary is available.    96 

Furthermore, the accumulation of tectonic strain that drives tectonic earthquakes is assumed to be 97 
relatively constant (with respect to the timescales of our observations). In contrast, the human-made 98 
perturbations that drive induced seismicity may quickly increase in scale and spatial extent during 99 
operations, for example as injection continues in a given well. As a result, induced seismicity 100 
sequences may be expected to grow as injection progresses.  101 

While van der Elst et al. (2016) suggested that the order in which induced earthquakes occur is random, 102 
subsequent analyses of induced seismicity sequences have shown evidence for progression of event 103 
magnitudes as sequences have grown (e.g., Skoumal et al., 2018; Verdon and Bommer, 2021; Watkins 104 
et al., 2023). Whereas estimates of the maximum possible magnitude, MT

MAX, should be constant, as 105 
this parameter is controlled by underlying physical conditions (e.g., the size and frictional properties 106 
of nearby faults), forecasts of MMAX during induced seismicity may be time-dependent, since we should 107 
expect a different maximum magnitude event to occur if, for example, we were to inject a given volume 108 
of fluid for only 1 month, versus injecting the same volume of fluid every month for a period of years.  109 

 110 

1.2. Forecasting induced seismicity magnitudes 111 

A range of methods to forecast magnitudes during induced seismicity sequences have been developed. 112 
One approach is to use numerical geomechanical simulations of subsurface processes (e.g., Rutqvist 113 
et al., 2013; Verdon et al., 2015; Dempsey and Suckale, 2017). However, such modelling is often 114 
difficult to apply in practice since a detailed characterisation of the subsurface is required to generate 115 
a model. For many cases, the causative faults on which induced seismicity occurred were not visible 116 
in geophysical surveys acquired prior to the onset of industrial activities (e.g., Eaton et al., 2018; Cesca 117 
et al., 2021; Nantanoi et al., 2022). Even where faults are successfully imaged, quantification of their 118 
mechanical and frictional properties, as required for accurate numerical geomechanical modelling, can 119 
be challenging.  120 

The alternative to physics-based numerical modelling is to use statistics-based approaches. For these 121 
methods the observed population of seismic events is characterised statistically, and the statistical 122 
models are then used to make forecasts of the ongoing seismicity. A commonly used approach is to 123 
characterise a relationship between the rate of seismicity and the volume of fluids injected into (or 124 
removed from) the subsurface at an early stage of operations (e.g., McGarr, 1976, Shapiro et al., 2010; 125 
Hallo et al., 2014; Mancini et al., 2021). The future seismicity can then be forecast by extrapolating 126 
this relationship to a future planned injection (or production) volume. This approach has been used to 127 
forecast seismicity and guide decision-making for several notable cases of induced seismicity, 128 
including the Helsinki St1 Deep Heat project (Kwiatek et al., 2019), the Weyburn Carbon Capture and 129 
Storage Project (Verdon, 2016), and during hydraulic fracturing of the Preston New Road shale gas 130 
wells in Lancashire, UK (Clarke et al., 2019; Kettlety et al., 2021). Verdon et al. (2024) published a 131 
comprehensive appraisal of the performance of the Shapiro et al. (2010) and Hallo et al. (2014) models 132 
across a wide range of WWD-induced seismicity case studies.  133 

 134 

1.3. Forecasting induced seismicity magnitudes using extreme value estimators    135 

An alternative approach relies solely on the characterisation of the earthquake population, without any 136 
reference to injection or production rates or any other subsurface information. This approach, applied 137 
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by Mendecki (2016) for mining induced seismicity, is based on the theory of extreme value estimators 138 
developed by Cooke (1979) and is related to methods developed to estimate tectonic MT

MAX values 139 
from observed natural earthquake populations (e.g., Kijko, 2004). The relative simplicity of this 140 
method, since it does not require any operational or geological information, is an attractive aspect of 141 
this approach. A limitation is the need for a catalog of observed seismicity to make a forecast. 142 
However, for cases of induced seismicity we are often able to observe the seismicity to a low 143 
magnitude of completeness if dedicated monitoring systems are installed before the start of operations.  144 

Mendecki (2016) applied two approaches to forecasting induced seismicity magnitudes using the order 145 
statistics theory of Cooke (1979). For a random sample of n magnitude observations, MO, drawn from 146 
a constant underlying distribution, the upper limit for future such observations can be estimated as: 147 
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where MO
i represents the event magnitudes sorted into size order, from smallest to largest, such that 148 

MO
n is the largest event observed to date, which we refer to as MO

MAX.  149 

Alternatively, one can consider the jumps in magnitude between events, ΔMO, since an estimate for 150 
the next largest event can be obtained by adding the estimated maximum jump, ΔMMAX, to the observed 151 
largest event. We refer to this estimate as the “jump-limited” magnitude: 152 

𝑀)" = 𝑀*+,
$ + Δ𝑀*+, (2) 

The maximum jump is calculated using the same formulation as Equation 1, but applied to the 153 
distribution of magnitude jumps:  154 
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where ΔMO
i represents the magnitude jumps ordered from smallest to largest, and nj is the number of 155 

jumps. There are several ways in which these methods can be applied in practice to forecast induced 156 
event magnitudes (see Section 2 for further details). For example, since these estimators can be applied 157 
to any quantity, the input to these equations can be magnitudes, seismic moments, or potencies.     158 

Our aim in this study is to forecast the magnitudes of new record-breaking events during induced 159 
seismicity sequences (MNRB). The two magnitude estimators defined above, MUL and MJL, provide a 160 
means by which this can be done. We might normally expect MNRB values to follow the jump-limited 161 
estimator, since this explicitly describes the jumps to new record-breaking magnitudes. However, there 162 
is a possibility that the next event to occur is at (or close to) the upper limit value as given by the MUL 163 
estimator. We therefore might expect to find, in practice, a distribution of MNRB observations, with 164 
most cases falling close to the MJL values, but with some events falling closer to the MUL estimate. 165 
Hence, our approach is to combine our estimates of MUL and MJL to produce a combined estimator for 166 
MNRB. 167 

We note that in forecasting record-breaking events, the implicit assumption is that induced event 168 
magnitudes will continue to grow during a sequence. In reality, induced seismicity sequences may 169 
stabilise and decrease, either as pressures stabilise in large, open reservoirs (e.g., Verdon et al., 2024), 170 
or in response to successful mitigating actions taken by operators. Clearly, forecasting methods that 171 
include an implicit assumption that new record-breaking magnitudes will occur may not be appropriate 172 
in such circumstances. In Section 5.3 we discuss how it might be possible to identify when an induced 173 
seismicity sequence is decaying such that forecasting new record-breaking events is no longer 174 
appropriate. Likewise, the methods presented in Equations 1 – 3 do not provide any temporal 175 
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constraint – when might a new record-breaking event be expected to occur? Again, in Section 5.3 we 176 
provide some discussion as to how temporal constraints could be introduced.    177 

 178 

1.4. The need for performance assessment of induced seismicity forecasting models 179 

If induced seismicity forecasting models are to be used to guide decision-making at active industrial 180 
sites, then there is a clear need for robust, transparent testing of such models. Only through robust 181 
testing can we gain confidence in the performance of models such that they can be relied on to guide 182 
operational decisions that, on the one hand, may compromise significant financial investments (if 183 
projects are abandoned due to potential induced seismicity hazard), while on the other hand could 184 
compromise public safety (if larger magnitude events are allowed to occur without mitigation). The 185 
public often takes a strong interest in the occurrence of induced seismicity, and so model testing must 186 
be transparent and reproducible as a loss of trust of public in ability to safely conduct underground 187 
energy operations easily results in loss of social license to operate and rejection of future projects.  188 

Empirical testing of forecasting models can go beyond simple assessments of performance since results 189 
can be used to feed back into future forecasts. In our case, we anticipate that record-breaking 190 
magnitudes will follow the MJL estimator but we allow for the possibility that magnitudes could jump 191 
to the upper limit MUL value. As such, the MJL and MUL values may provide lower and upper estimates 192 
for MNRB, respectively. A suite of models could be combined to produce an overall estimate (and 193 
preferably, a probability distribution thereof) for upcoming induced event magnitudes. An overall 194 
estimate from a suite of models should consider the observed performances of the different modelling 195 
strategies as applied to large numbers of induced seismicity case studies.   196 

 197 

1.5. Study objectives 198 

The objective of this study is to provide a systematic assessment of the performance of the MUL and 199 
MJL estimators as applied to a large number of cases of injection-induced seismicity. We evaluate 200 
several different ways in which these methods can be applied, for example using earthquake 201 
magnitudes versus potencies as the inputs to Equations 1 – 3; and using all observed events and jumps 202 
as inputs versus only the events and jumps that represent new record-breaking events (see Section 2). 203 
In doing so, we investigate the influence of these different formulations on the resulting MNRB forecasts 204 
and quantitatively compare their respective performances.  205 

Our observations across a large number of induced seismicity sequences provide empirical data on the 206 
behaviour of record-breaking magnitudes relative to the MUL and MJL estimators. These observations 207 
allow us to define an empirically constrained estimator for MNRB, where the next record-breaking 208 
magnitude is expected to fall within a statistical distribution that is defined based on the MUL and MJL 209 
estimates.   210 

2. METHODS 211 

Equations 1 – 3 describe two approaches to estimating induced event magnitudes. MUL describes the 212 
expected upper limit magnitude based on the population of observed events to date. MJL defines the 213 
expected next record-breaking magnitude based on the population of magnitude jumps, with the largest 214 
expected magnitude jump being added to the largest observed event to date.  215 

For both of these estimates, calculations can use either the earthquake magnitudes or seismic moments, 216 
MO (or potencies, P = MO/G, where G is the shear modulus). Hereafter, we refer to results computed 217 
using magnitudes with the subscript MM, and results computed using potencies with the subscript MO. 218 
Furthermore, the magnitudes and magnitude jumps used as inputs to Equations 1 – 3 can be taken from 219 
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the entire event catalog, where MO
i represents the entire event population sorted into size order and 220 

ΔMO
i represents the magnitude (or potency) jump between every event when the entire population is 221 

sorted into magnitude order, with ΔMO
i then being sorted into size order. Alternatively, one can use an 222 

event population that consists only of the record-breaking events as they appear in a sequence, where 223 
MO

i represents the record-breaking events sorted into size order, and ΔMO
i represents the jumps 224 

between the record-breaking events. Hereafter, we refer to calculations using the entire event 225 
population resorted into size order with the subscript AE (for all events) and calculations using only the 226 
record-breaking events as RB (for record-breaking events). These combinations mean that we have a 227 
total of 8 possible ways in which induced event magnitudes can be estimated. These are summarised 228 
in Table 1. 229 

Table 1: Summary of different model implementations used for MNRB forecasting 230 
Model 

No. 
Model 
Name 

Upper Limit [UL] or Jump-
Limited [JL] formula 

All Events in Size Order [AE] 
or Record Breaking only [RB] 

Magnitudes [MM] or 
Potencies [MO] 

1 MUL_RB_MM UL RB MM 
2 MUL_RB_MO UL RB MO 
3 MUL_AE_MM UL AE MM 
4 MUL_AE_MO UL AE MO 
5 MJL_RB_MM JL RB MM 
6 MJL_RB_MO JL RB MO 
7 MJL_AE_MM JL AE MM 
8 MJL_AE_MO JL AE MO 

 231 

We note that dedicated microseismic monitoring arrays often produce large numbers of events (e.g., 232 
Verdon and Budge, 2018), but even for a very large catalog ranging across several orders of magnitude 233 
we often observe only a few record-breaking events. Thus, the methods based on record-breaking 234 
versus all events represent different approaches to statistical estimates. By definition, the record-235 
breaking method excludes aftershocks as these are smaller than, and occur after, a mainshock and 236 
therefore do not contribute to record-breaking series. However, the approach based on all events 237 
includes aftershocks in the evaluation of the maximum magnitude while representing whole sequence.  238 

Given the different ways in which these estimators can be applied to induced seismicity sequences, 239 
there is a clear need to produce a quantitative comparison of their relative performance in forecasting 240 
magnitudes during induced seismicity sequences. Several studies have applied various versions of the 241 
MUL and/or MJL methods to cases of induced seismicity (Cao et al., 2020; Verdon and Bommer, 2021; 242 
Watkins et al., 2023; Schultz et al., 2023a; Cao et al., 2024). In general, these studies have produced 243 
results that show that, at least from a qualitative perspective, these methods do provide useful 244 
forecasting potential. Whereas Mendecki (2016) formulated these methods in terms of seismic 245 
potency, all of the later studies have used earthquake magnitudes. Cao et al. (2020) applied the MUL 246 
and MJL methods to the seismicity induced by gas production at Groningen and to a case of hydraulic 247 
fracturing-induced seismicity in North America. In their calculations, they used all events and jumps 248 
within the catalogs, not just record-breaking ones.  249 

Verdon and Bommer (2021) applied the MJL approach to a compilation of 22 instances of hydraulic 250 
fracturing-induced seismicity, and Watkins et al. (2023) applied the MJL approach to 27 cases of 251 
seismicity induced by WWD and NGS. Like Cao et al. (2020), Verdon and Bommer (2021) and 252 
Watkins et al. (2023) used the jumps between all events (when sorted into size order), not just the 253 
jumps to new record-breaking events.  254 

Cao et al. (2024) applied the MJL approach to 15 cases of induced seismicity (mostly consisting of the 255 
same hydraulic fracturing sequences examined by Verdon and Bommer, 2021), but using as input to 256 
their model only the population of jumps that created new record-breaking events. Schultz et al. 257 
(2023a) applied the MJL approach to the sequence of WWD-induced seismicity at Musreau Lake, 258 
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Alberta. Like Cao et al. (2024), they used as inputs only the population of jumps that created new 259 
record-breaking events.  260 

For all the above studies, the assessment of model performance has been somewhat unsystematic. 261 
Mendecki (2016) demonstrated his methods by application to a single example of mining-induced 262 
seismicity but did not make any quantitative assessment of model performance. Likewise, Cao et al. 263 
(2020) and Schultz et al. (2023a) simply compared the evolution of the observed earthquakes with the 264 
changing MNRB estimates, noting that the models generally did a reasonable job of fitting the observed 265 
magnitudes. Verdon and Bommer (2021) and Watkins et al. (2023) produced cross-plots of modelled 266 
versus observed MMAX (the largest magnitude within each sequence), while Cao et al. (2024) compared 267 
modelled and observed magnitudes each time a new record-breaking event occurred (MNRB). These 268 
plots showed evidence for correlation between observed and modelled magnitudes, but also showed 269 
that at times the MJL model can underestimate MNRB. As such, there has not yet been any effort to 270 
systematically quantify the performance of these methods, either between the different methods, or for 271 
the same method between different sites. In the following section we introduce the datasets that we 272 
use to assess the performance of each method, before presenting our results in Section 4.    273 

3. DATASETS 274 

3.1. Oklahoma and southern Kansas 275 

WWD in central and northern Oklahoma and southern Kansas (OK-KS hereafter) has increased 276 
significantly over the past two decades, driven primarily by a move towards hydrocarbon production 277 
from reservoirs with high water fractions, with the produced water then requiring disposal (Rubenstein 278 
and Mahani 2015). WWD, primarily into the deep Arbuckle Formation, has caused significant amounts 279 
of induced seismicity (Weingarten et al. 2015), including some of the largest induced events to have 280 
ever been recorded from fluid injection activities, such as the M 5.6 Prague (Keranen et al., 2013) and 281 
M 5.8 Pawnee (Yeck et al., 2017) sequences. Induced seismicity in Oklahoma has also been caused 282 
by hydraulic fracturing (e.g., Holland, 2013; Skoumal et al., 2018; Verdon and Rodríguez-Pradilla, 283 
2023), particularly in the Anadarko Basin. However, our focus here is on central and northern 284 
Oklahoma and southern Kansas, where the bulk of the seismicity is caused by WWD.  285 

In this study we use the earthquake catalog published by Park et al. (2022), who used the PhaseNet 286 
deep learning model (Zhu and Beroza, 2019) to detect earthquakes recorded by publicly available 287 
seismic networks in the OK-KS region. The deep learning model produced a significant increase in 288 
event detection, improving detection thresholds by at least 1 magnitude unit over pre-existing 289 
earthquake catalogs for the region. We adopt a minimum magnitude of completeness of MC = 1.5, 290 
based on the magnitude-frequency relationships plotted in Figure 2 of Park et al. (2022). To estimate 291 
potencies from the given magnitudes, we adopt a single value of G = 20 GPa (this value is adopted for 292 
all sequences in our study).  293 

There are 70 earthquakes in the Park et al. (2022) catalog with magnitudes ≥ 4.0. Some of these events 294 
occur in close spatial proximity to each other such that they can be considered to be part of the same 295 
sequence. Park et al. (2022) identified clear, discrete fault structures that were responsible for hosting 296 
most of the larger magnitude events. These structures typically had lengths of between 5 – 20 km (see 297 
Figures 1 and 2 of Park et al., 2022). Where multiple M ≥ 4.0 events were located within 10 km of 298 
each other, we treated these as being part of the same sequence of induced events. In doing so, we 299 
identified 24 individual sequences in which induced event magnitudes reached or exceeded M 4.0 (see 300 
Figure 1). We take these 24 sequences as test datasets for our analysis. For each case, we define a 301 
20 × 20 km square around the M ≥ 4.0 event (or the largest event for sequences which contain more 302 
than one M ≥ 4.0 event). All earthquakes within this square are taken as representing part of the 303 
sequence and used to perform our MMAX forecasting. The M ≥ 4.0 events, and the 20 × 20 km squares 304 
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around them, are shown in Figure 1. The choice of dimensions (20 × 20 km) was somewhat arbitrary, 305 
but we found that such dimensions were usually sufficient to capture the bulk of the seismic events 306 
that occurred on each of the discrete fault strands that hosted larger events, as identified by Park et al. 307 
(2022). 308 

 309 

 310 

Figure 1: Map of the OK-KS study area. Black dots show all earthquakes with M ≥ 1.5 and coloured 311 
circles show events with M ≥ 4.0. The solid boxes show the 20 × 20 km blocks around each of the 312 

sequences containing M ≥ 4.0 events, while the dashed boxes show 20 × 20 km blocks in which 500 313 
events were recorded with no M ≥ 3.5 events. The box colours used in this figure correspond to the 314 

marker colours used in Figure 3.  315 

 316 

In testing induced seismicity forecasting models, there can be a tendency to focus on cases where 317 
larger magnitude events occurred, since these cases tend to attract the most attention (from the public 318 
and policy makers, as well as from academics). However, comprehensive testing should include 319 
sequences that did not reach larger magnitudes, since our objective is to develop models that can 320 
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differentiate between sequences that do, and that do not, escalate to higher magnitude events. Hence, 321 
in addition to the 24 sequences with M ≥ 4.0 events, we identify the same number of cases where 322 
magnitudes did not exceed M 3.5, selecting twenty-four 20 × 20 km blocks at random within the study 323 
area that contained at least 500 events but no events with M ≥ 3.5. To do so, we randomly generated 324 
block positions and rejected those that did not meet these criteria, continuing until we had 24 cases. 325 
The 24 blocks without larger magnitude events are also shown in Figure 1.  326 

There is some overlap between the different blocks that are treated hereafter as discrete induced 327 
seismicity sequences, meaning that some events are included in more than one forecast. This will create 328 
some partial dependence between results from individual sequences. However, in our view a smaller 329 
event that is mid-way between the future locations of two different larger events could be reasonably 330 
considered to be a precursor to either or both, and so it is reasonable that such events could be included 331 
within the forecasts for both larger events, and this partial dependence cannot therefore be avoided.  332 

 333 

3.2. Permian Basin, western Texas 334 

Induced seismicity has been recognised in the Permian Basin of western Texas (WTX hereafter) since 335 
the 1970s (Davis and Pennington, 1989). Rates of seismicity in the basin have increased substantially 336 
since 2015 (Skoumal et al., 2020), associated with WWD and hydraulic fracturing. Given the co-337 
location of these activities, distinguishing causality between WWD and hydraulic fracturing can be 338 
challenging, although the bulk of the seismicity is thought to have been caused by WWD (Grigoratos 339 
et al., 2022). Three M ≥ 5.0 events have been induced in this basin: the March 2020 M 5.0 event near 340 
to the city of Pecos in Reeves County (Skoumal et al., 2021), the November 2022 Coalson Draw M 5.4 341 
event in western Reeves County, and the December 2022 M 5.2 event in Martin County, just to the 342 
north of the city of Midland (Hennings and Young, 2023).  343 

In this study we use the TexNet earthquake catalog (Savvaidis et al., 2019), with data running from 344 
the start of 2017 until April 2023. We computed the minimum magnitude of completeness by 345 
evaluating the lowest magnitude at which the cumulative magnitude-frequency distribution was 346 
consistent with the G-R distribution, as assessed by the Kolmogorov-Smirnov test with an acceptance 347 
criterion of 10 % (Clauset et al., 2009), which gave MC = 2.0. There are 48 events for which M ≥ 4.0 348 
(Figure 2). Our examination of the temporal and spatial evolution of the seismicity identified 11 349 
individual sequences in which induced event magnitudes reached or exceeded M 4.0. Much like for 350 
our OK-KS datasets, we define 20 × 20 km squares around each sequence and use all events within 351 
these blocks to perform our MNRB forecasting. We then identify an equal number (i.e., 11) of 20 × 20 352 
km blocks containing at least 100 events (we use a lower criterion here recognising the lower number 353 
of events in the TexNet catalog compared to the Park et al. (2022) catalog for OK-KS) but no events 354 
larger than M 3.5, in order to test MNRB model performance for cases where larger magnitude events 355 
did not occur.   356 

 357 

3.3. Watkins et al. (2023) sequences 358 

Watkins et al. (2023) published MMAX forecasts using the MJL_SO_MM formulation for more than 20 359 
individual sequences of WWD and NGS-induced seismicity. Some of the Watkins et al. (2023) 360 
sequences are already included in our OK-KS and WTX datasets described in the previous sections 361 
(Reeves and Cogdell in Texas, Cushing, Fairview, Guthrie-Langston, Pawnee and Prague in 362 
Oklahoma, Milan and Harper in Kansas), while for some older sequences with lower levels of 363 
monitoring, the largest events occurred before a sufficient number of events were available to compute 364 
MNRB estimates (e.g., the Cordel sequence in Alberta). This left 16 additional sequences which we were 365 
able to include in our analysis, including: the Azle-Reno, Dallas-Fort Worth, Venus, Timpson and 366 
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Irving sequences in eastern Texas (Hennings et al., 2021; Frohlich et al., 2014); the Guy-Greenbrier 367 
sequence in Arkansas (Horton, 2012); the Youngstown sequence in Ohio (Kim, 2013); the Paradox 368 
Valley, Greeley and Raton Basin sequences in Colorado (Block et al., 2014; Yeck et al., 2016; Nakai 369 
et al., 2017); the Eagle West, Graham, and Musreau Lakes sequences in western Canada (Horner et 370 
al., 1994; Hosseini and Eaton, 2018; Li et al., 2022); the Rongchang sequence in the Sichuan Basin 371 
(Wang et al., 2020); the Castor project in the Gulf of Valencia, Spain (Cesca et al., 2021); and the 372 
Puerto Gaitán sequence, Colombia (Molina et al., 2020). For each of these sequences, we use the 373 
earthquake catalogs published in the Supplementary Materials of Watkins et al. (2023). We refer to 374 
these sequences as the W23 cases hereafter. 375 

   376 

 377 

Figure 2: Map of the western Texas study area. Black dots show all earthquakes with M ≥ 1.0 and 378 
coloured circles show events with M ≥ 4.0. The solid boxes show the 20 × 20 km blocks around each 379 
of the sequences containing M ≥ 4.0 events, while the dashed boxes show 20 × 20 km blocks in which 380 
100 events were recorded with no M ≥ 3.5 events. The box colours used in this figure correspond to 381 

the marker colours used in Figure 4. 382 

 383 

3.4. Application 384 

For the OK-KS and WTX datasets we compute MNRB values at intervals of 0.5 months, starting at the 385 
time when at least 10 events above the magnitude of completeness within the sequence have been 386 
recorded, and continuing for the duration of the available catalog. For the W23 sequences, the 387 
timespans of each sequence are highly variable – we therefore compute MNRB values at 1,000 evenly-388 
spaced intervals between the first and final event within each sequence. At each time step we estimate 389 
the next record breaking magnitude in a pseudo-prospective manner, using all the events in the 390 
sequence that occurred prior to a given time to estimate MNRB for the next time interval.   391 
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Our objective is to assess the forecast performance as each sequence evolves. We therefore make 392 
comparisons between observed and modelled magnitudes each time there is a new largest event within 393 
the sequence. Each new largest event within the sequence is treated as an observed record-breaking 394 
event, MO

NRB. The MO
NRB values are compared against the MNRB values calculated at the timestep prior 395 

to when the MO
NRB event occurred. For the calculations made using potencies, the modelled values are 396 

converted back to magnitude to facilitate a comparison with the observed magnitudes.  397 

4. RESULTS 398 

Figures 3, 4 and 5 show our results, comparing the observed and forecast MO
NRB and MNRB values, using 399 

each of the 8 methods described in Table 1, for the sequences from OK-KS (Figure 3), WTX (Figure 400 
4), and the W23 sequences (Figure 5). In total we have applied our models to 86 sequences (48 in OK-401 
KS, 22 in WTX, 16 from W23), with a combined total of 331 individual record-breaking events within 402 
these sequences (205 from OK-KS, 72 from WTX, 54 from W23). The time evolution of every 403 
individual sequence, and the corresponding modelled MNRB values, are provided in the supplementary 404 
materials (Section S3).  405 

 406 

Figure 3: Results for OK-KS sequences comparing observed and modelled magnitudes for each of 407 
the MNRB forecasting methods listed in Table 1. Marker colours correspond to sequences within each 408 

box shown in Figure 1.  409 

 410 

We quantify the model performance using several metrics. We compute the root-mean-squared (RMS) 411 
error between modelled and observed magnitudes, σRMS, the Pearson correlation coefficient between 412 
modelled and observed magnitudes, r, and the gradient of the line of (least squares) best-fit, m. A well-413 
performing model should minimise σRMS and maximise r, and have a best-fit gradient close to 1.0, 414 
implying a 1:1 relationship between MNRB and MO

NRB. Additionally, in most applications we anticipate 415 
that MNRB forecasting will be used to guide operational decision making in order to avoid unwanted 416 
large events. It is therefore of particular importance that models do not make large underpredictions, 417 
such that the actual seismicity significantly exceeds what has been forecast by the model. We therefore 418 
compute NUP, the percentage of MO

NRB instances where the forecast MNRB value was a significant 419 
underprediction with MNRB < MO

NRB – 0.5. These metrics are listed in Table 2 for the OK-KS, WTX 420 
and the W23 sequences respectively.     421 



  13 

 422 

Figure 4: Results for WTX sequences comparing observed and modelled magnitudes for each of the 423 
MNRB forecasting methods listed in Table 1. Marker colours correspond to sequences within each box 424 

shown in Figure 2.  425 

 426 

In general, we observe strong correlation between the modelled and observed MNRB values, implying 427 
that these methods all provide useful forecasting information for induced seismicity magnitudes, and 428 
could therefore be used as part of a decision-making strategy to manage induced seismicity. The 429 
performance of these models is generally better than that found by Verdon et al. (2024) for commonly 430 
used volume-based forecasting models, having higher correlation coefficients between modelled and 431 
observed magnitudes, lower RMS errors (except for the MUL_RB_MM and MUL_RB_MM models, see below), 432 
and fewer cases where models produced significant underpredictions of upcoming magnitudes.     433 

 434 

 435 

Figure 5: Results for the W23 sequences comparing observed and modelled magnitudes for each of 436 
the MNRB forecasting methods listed in Table 1.  437 
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 438 

Table 2: Performance metrics for OK-KS, WTX and W23 sequences. 439 
Model σRMS r m NUP [%] 

OK-KS 
MUL_RB_MM 1.84 0.86 1.27 0 
MUL_RB_MO 0.41 0.86 0.76 14.2 
MUL_AE_MM 1.67 0.86 1.24 0 
MUL_AE_MO 0.41 0.85 0.76 14.2 
MJL_RB_MM 0.93 0.75 1.11 3.4 
MJL_RB_MO 0.37 0.87 0.82 12.7 
MJL_AE_MM 0.47 0.81 0.85 7.3 
MJL_AE_MO 0.41 0.85 0.78 14.6 

WTX 
MUL_RB_MM 2.06 0.90 1.23 0 
MUL_RB_MO 0.32 0.92 0.78 12.5 
MUL_AE_MM 1.84 0.91 1.26 0 
MUL_AE_MO 0.32 0.92 0.78 12.5 
MJL_RB_MM 0.89 0.83 1.35 2.8 
MJL_RB_MO 0.32 0.91 0.81 12.5 
MJL_AE_MM 0.54 0.80 0.98 5.6 
MJL_AE_MO 0.32 0.91 0.79 12.5 

W23 
MUL_RB_MM 2.37 0.93 1.62 0 
MUL_RB_MO 0.34 0.94 0.93 11.1 
MUL_AE_MM 2.43 0.92 1.66 0 
MUL_AE_MO 0.34 0.94 0.93 11.1 
MJL_RB_MM 0.81 0.83 1.04 3.7 
MJL_RB_MO 0.34 0.93 0.94 11.1 
MJL_AE_MM 0.59 0.85 1.05 3.7 
MJL_AE_MO 0.34 0.94 0.93 9.3 

 440 

More detailed inspection of Figures 3 – 5 and Table 2 leads us to the following conclusions, all of 441 
which are consistent between the OK-KS, WTX, and W23 sequences.  442 

Using re-sorted magnitudes or just record-breaking events does not significantly change 443 
forecasting performance. The use of the entire earthquake catalog, versus solely using record-444 
breaking events (or jumps to record-breaking events), was a key point of difference between Cao et al. 445 
(2020), Verdon and Bommer (2021) and Watkins et al. (2023) on the one hand, and Cao et al. (2024) 446 
and Schultz et al. (2023a) on the other. However, comparison of panels (a) vs (c), (b) vs (d), (e) vs (g), 447 
and (f) vs (h) of Figures 3 – 5 show that these different implementations in fact produce very similar 448 
results. From examination of Equations 1 and 3 this outcome is unsurprising since only the first few 449 
terms of the weighting applied to the summation of the magnitudes (or jumps), given by:  450 

𝑊' = '1 −
𝑖
𝑛+

#
− '1 −

𝑖 + 1
𝑛 +

#
 (4) 

are significant (Mendecki, 2016). The first weightings correspond to the largest magnitudes (or 451 
magnitude jumps), which tend to be magnitudes (or jumps) that produce record-breaking events. 452 
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Figure 6 plots the value of Wi as a function of i and n. The weighting term drops to values of 0.01 or 453 
less after the 4th term in the summation (the weighting applied to the 4th-largest magnitude or jump). 454 
The fact that only a few values are required to produce stable magnitude estimates is an additional 455 
advantage of this approach, since it can be applied even where only a few initial events have been 456 
observed in a new sequence.   457 

 458 

 459 

Figure 6: Value of the weighting W applied within the summation term in Equations 1 and 3 (as 460 
defined in Equation 4) as a function of i. The contours here show values of log10(W). For any value 461 

of n, the weighting for terms where i > 4 is less than 0.01.   462 

 463 

Upper limit models using magnitude provide a credible upper limit. The MUL_AE_MM and MUL_RB_MM 464 
models (panels (a) and (c) in Figures 3 – 5) did not produce any significant underpredictions (NUP = 0). 465 
This is notable given that we have applied it to 86 individual earthquake sequences. Hence, the 466 
UL_MM values (upper limit calculations using magnitudes) do seem to provide a credible upper limit 467 
to induced earthquake magnitudes.  468 

However, while these values never produced underpredictions, they did not provide a good fit to the 469 
evolution of record-breaking magnitudes within sequences, tending to produce significant 470 
overpredictions in most cases. This is to be expected since the MUL method is formulated to estimate 471 
the largest possible value within a distribution, not the expected next record-breaking event. As a 472 
result, the MUL_AE_MM and MUL_RB_MM models gave the largest σRMS values, and best-fit relationships with 473 
the gradient m significantly higher than 1.0. That said, the correlation coefficients for the MUL_AE_MM 474 
and MUL_RB_MM models are not significantly worse than those of other models, implying that the scatter 475 
between modelled and observed magnitudes is no worse than for the other models, just the fit is not 476 
along the 1:1 line, resulting in systematic overprediction.   477 

Next record-breaking models using magnitudes produce the highest scatter. Although the 478 
MJL_AE_MM and MJL_AE_MM models (panels (e) and (g) in Figures 3 – 5) produced reasonable fits between 479 
observed and modelled magnitudes, with the gradient m close to 1.0, these models had the lowest 480 
correlation coefficients of all the models, and the highest σRMS values with the exception of the 481 
overpredicting MUL_AE_MM and MUL_RB_MM models, as described above. The MJL_AE_MM and MJL_RB_MM 482 
models therefore produced the highest scatter between modelled and observed magnitudes and may 483 
therefore have the least utility in forecasting. This is ironic given that this approach has been the most 484 
widely used to date, forming the basis of results presented by Cao et al. (2020; 2024), Verdon and 485 
Bommer (2021), Watkins et al. (2023) and Schultz et al. (2023a).    486 
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Potency-based models have the least scatter, but significantly underpredict on occasion. All four 487 
of the models that used earthquake potencies, MUL_AE_MO, MUL_RB_MO, MJL_AE_MO, and MJL_RB_MO (panels 488 
(b), (d), (f) and (h) in Figures 3 – 5) produced very similar results. These models had the lowest σRMS 489 
values and highest correlation coefficients, indicating that these models had low scatter and the closest 490 
match between modelled and observed magnitudes. However, these models also produced the largest 491 
number of underpredictions, with between 10 – 15 % of events being underpredicted by more than 0.5 492 
magnitude units. We surmise that in most cases where sequences are evolving relatively gently, the 493 
potency-based models perform well. However, they do not perform as well in capturing the more 494 
unusual sequences where a sharp increase in magnitudes takes place. 495 

5. DISCUSSION 496 

5.1. Towards an empirically constrained probabilistic model 497 

Our results show that the upper limit magnitude-based models, MUL_AE_MM and MUL_RB_MM, provided 498 
credible upper bounds for the actual event magnitudes, having no significant underpredictions after 499 
application to a large number of sequences. However, in most cases these models overpredicted the 500 
observed events. In contrast, the potency-based models (MUL_AE_MO, MUL_RB_MO, MJL_AE_MO, and 501 
MJL_RB_MO) generally produced a good fit to the observed magnitudes, but occasionally produced 502 
significant underpredictions.  503 

From this, it is reasonable to propose a composite approach to forecasting event magnitudes where 504 
MUL_AE_MM or MUL_RB_MM is used provide an upper estimator for the expected magnitude of the next 505 
record-breaking event and MUL_AE_MO, MUL_RB_MO, MJL_AE_MO, or MJL_RB_MO is used to provide a lower 506 
estimator for the expected magnitude. Hereafter, we use MUL_RB_MM for the upper estimator and 507 
MJL_AE_MO for the lower estimator, referred to hereafter as MUE and MLE respectively. 508 

The probability distribution of event magnitudes between these estimators can be evaluated through 509 
empirical calibration with our observed seismicity. For each event, we normalise each observed record-510 
breaking event magnitude relative to the MLE and MUE estimators at the time of the event’s occurrence:  511 

𝑀.
$ =

𝑀./0
$ −𝑀"1

𝑀!1 −𝑀"1
 (5) 

We then examine the distribution of these normalised magnitudes – where do events typically fall with 512 
respect to the upper and lower magnitude estimators? Our results for each of our studies are shown in 513 
Figure 7. The distributions of MO

N are consistent between the three sets of sequences that we studied. 514 
Most values are close to 0, i.e., they match the modelled lower estimator values, MO

NRB = MLE. 515 
However, the distribution has a tail of higher values extending towards 1, i.e., where observed 516 
magnitudes reach towards the higher estimator values, MO

NRB = MUE.  517 

We examine the fit of various statistical distributions to our observations, including lognormal, a 518 
Gumbel, and Generalised Extreme Value (GEV) distributions. We further test the performance of these 519 
distributions when applied to synthetically generated sequences. These results are shown in our 520 
Supplementary Materials (Sections S1 and S2). The consistency found for MO

N between our different 521 
case studies and synthetic models enables us to construct an empirically constrained probabilistic 522 
model for induced seismicity forecasting using extreme value estimators. We find that our observations 523 
are reasonably approximated either by a shifted lognormal distribution with a mean of μLN = -1.4, a 524 
deviation of σLN = 0.6, and a shift of δLN = 0.2, or a GEV distribution with shape parameter kGEV = 0.23, 525 
scale parameter σGEV = 0.1, and location parameter μGEV = 0.0. Hereafter we use the GEV distribution 526 
as providing the best fit to our combined observations (see Supplementary Materials Section S1).      527 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 7: Distribution of normalised observed magnitudes MO
N (bars), where the observed 528 

magnitudes are normalised relative to the modelled upper and lower estimators, for the OK-KS (a), 529 
WTX (b), and W23 (c) sequences, and for all observations combined (d). The red and blue lines show 530 

the shifted lognormal and GEV distributions that we adopt to approximate the observed 531 
distributions.    532 

 533 

For a given sequence of seismicity, we compute the MUE and MLE estimators at a given time. Having 534 
computed MUE and MLE, we can compute the probabilities for the next largest magnitude event that 535 
will occur in the sequence. We use Equation 5 to normalise magnitudes relative to MUE and MLE, and 536 
then estimate the probability of occurrence for any magnitude event from the GEV distribution with 537 
scale, shape and location parameters described above.   538 

Our synthetic testing (Supplementary Materials Section S2) shows that the observed distributions are 539 
consistent with situations where no upper truncation is applied to the G-R distribution from which the 540 
events are drawn (or where the magnitude of truncation is much larger than the observed event sizes, 541 
such that is has, in effect, no impact on the simulated magnitudes). Where a truncation is applied to 542 
our synthetic tests, the MO

N values are systematically shifted towards the lower estimator (MO
N = 0), 543 

such that the representative distributions defined above are no longer appropriate. The similarities 544 
between our observed distributions and those generated by an untruncated model, alongside past 545 
studies which have generally failed to find significant evidence for magnitude truncations in most 546 
induced seismicity cases (e.g., van der Elst et al., 2016) suggest that our approach is reasonable with 547 
respect to this caveat. However, if clear upper truncations to the G-R distribution are observed for 548 
induced seismicity sequences (e.g., Verdon et al., 2018), then alternative methods for MMAX estimation, 549 
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such as those that explicitly assume an upper-truncated G-R distribution (e.g., Kijko and Sellevoll, 550 
1989; Pisarenko et al., 1996; Holschneider et al., 2011), may be preferable.         551 

  552 

5.2. Application to out-of-sample cases 553 

We demonstrate this approach by application to two notable cases of induced seismicity: from 554 
hydraulic fracturing at the Preston New Road PNR-2 well in Lancashire, England in 2019 (Kettlety et 555 
al., 2021), and from seismicity associated with WWD activities in north-western Alberta, near to the 556 
town of Peace River (Schultz et al., 2023b). The PNR-2 sequence is notable because its occurrence led 557 
the UK government to impose a moratorium on hydraulic fracturing, primarily because of the 558 
perceived inability to “accurately predict the probability or magnitude of earthquakes linked to 559 
fracking operations” (BEIS, 2019).  560 

The Peace River sequence reached a magnitude of M 5.6 in November 2022. If induced (the nature of 561 
this event is still disputed, see Salvage et al., 2024) it would be the largest magnitude induced event in 562 
the Western Canada Sedimentary Basin. This sequence is useful for our purposes since, given when it 563 
occurred, it was not included in the sequences compiled by Watkins et al. (2023), and so it represents 564 
an out-of-sample test, since the sequences in W23 were used to generate our empirically constrained 565 
distribution of MO

N.  566 

For the PNR-2 sequence, we use the corrected moment magnitudes published by Kettlety and Butcher 567 
(2022) – note that these MW values are different from the ML values published by Kettlety et al. (2021).  568 
For the Peace River sequence, we use earthquakes from the Alberta Geological Survey database (AGS, 569 
2020). Our results are shown in Figure 8, where the observed seismicity is compared with the forecast 570 
values. The solid lines in Figure 8 show the magnitude that has a 50 % chance of exceedance by the 571 
next record-breaking event, M50, while the dashed lines show M95 and M05 (i.e., the magnitude that has 572 
a 95 % chance of being exceeded, and the magnitude that has a 5 % chance of being exceeded by the 573 
next record-breaking event).  574 

 575 

 
(a) 

 
(b) 

Figure 8: Application of the empirically constrained forecasting model to the Preston New Road 576 
PNR-2 (a) and Peace River (b) sequences. Observed events are marked with grey dots. The solid line 577 
marks M50, while the dashed lines mark M05 and M95. For PNR-2, the bursts of seismicity associated 578 

with each discrete hydraulic fracturing interval (Stages 1-7) are marked with grey arrows. 579 

 580 

For the Peace River case, the forecast values are stable for the duration of the sequence. The M 5.6 581 
event that occurs is close to the M05 value, indicating a 5 % likelihood of this magnitude being reached 582 
or exceeded.   583 

S1
S2

S3 S4
S5

S6 S7
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For PNR-2, the M 2.8 event is well within the forecast range, and close to the M50 value at the time it 584 
occurred. Hydraulic fracturing at PNR-2 was conducted as a series of discrete injection stages, 585 
typically lasting between 1 – 2 hours, with only one injection stage taking place each day. Stage 7 was 586 
the last stage to have been stimulated, with the M 2.8 event occurring roughly 72 hours after this stage 587 
had been completed (Kettlety et al., 2021). The forecast values prior to Stage 7 are therefore of 588 
particular interest since these values could have informed the operational decision to perform this 589 
stage. At the time that injection of Stage 7 began, the likelihood of reaching or exceeding M 2.8 was 590 
12 %. The forecasting model therefore provides a reasonable characterisation of the hazard at the time 591 
that the decision to proceed with Stage 7 was made.  592 

Interestingly, the event that most exceeds the forecast is the M 1.9 event that followed Stage 6. At the 593 
start of injection of Stage 6, the likelihood of reaching or exceeding M 1.9 was only 1 %. Kettlety et 594 
al. (2021) identified that Stage 6 saw a significant change in geomechanical behaviour in the reservoir, 595 
with microseismicity beginning to occur along the fault structure that ultimately hosted the M 2.8 596 
event. Kettlety et al. (2021) interpreted the microseismicity prior to Stage 6 as being associated with 597 
hydraulic fracture propagation (and the reactivation of some natural fracture networks), whereas 598 
microseismicity from Stage 6 onwards begins to represent the onset of reactivation of a critically 599 
stressed fault.  600 

This highlights one of the challenges with induced seismicity forecasting – where a sudden change in 601 
the underlying geomechanical behaviour takes place, events from prior to this change may not be 602 
useful in forecasting subsequent behaviour. As described in our Methods, the MUL and MJL estimators 603 
assume that record-breaking magnitudes are sampled from a stationary underlying distribution. We 604 
note that this caveat also applies to other induced seismicity forecasting methods that assume constant 605 
scaling between injection rates and induced seismicity rates (e.g., Shapiro et al., 2010; Hallo et al., 606 
2014; Mancini et al., 2021).   607 

It is unclear the degree to which this assumption should be expected to hold for induced seismicity 608 
sequences. For WWD, injection rates are typically constant over years, creating a slow and steady 609 
pressure increase, such that a relatively constant underlying distribution of seismicity might be 610 
expected. However, Verdon et al. (2024) found evidence for accelerating rates of seismicity relative 611 
to injection volumes during the early stages of WWD-induced seismicity onset, which then stabilised 612 
at later times.  613 

The successful performance of the MUL and MJL estimators in our study suggests that the assumption 614 
of stationarity is sufficiently satisfied, at least on the timescale of intervals between record-breaking 615 
events in these WWD-induced sequences. In contrast, for hydraulic fracturing at PNR-2, the 616 
microseismicity associated with hydraulic fracture propagation during the earlier stages does not do a 617 
good job of forecasting what happened as the larger fault began to reactivate. Once this fault 618 
reactivated, the forecasting model using the seismicity from this point onwards does a good job of 619 
forecasting the subsequent seismicity that developed.  620 

These observations show that care should be taken to fully interpret and understand the geomechanical 621 
behaviours that can be manifested in microseismic event observations when using statistical models 622 
to forecast induced seismicity. It may be necessary to assess whether the underlying assumptions – 623 
such as stationarity and constancy of scaling between injection rate and seismicity rate – are reasonable 624 
in a particular case. These assumptions may not be appropriate in situations, such as at PNR-2, where 625 
a new fault structure is encountered by a growing injection pulse and begins to reactivate.  626 

 627 

5.3. Time dependent forecasting 628 

The forecasting methods developed here do not provide any estimate of whether a new record-breaking 629 
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event will occur and, if so, when it will occur. The timing of the next record-breaking event could be 630 
estimated from the growing number of earthquakes within a sequence. The expected number of record-631 
breaking events, Nrb, in a population of n events can be approximated, assuming that the events are 632 
independent and drawn from a constant underlying distribution, as (Arnold et al., 1998; Nevzorov, 633 
2001): 634 

𝑁23 ≈ ln(𝑛) + 0.577215 (6) 

with the variance given by: 635 

Var(𝑁23) = ln(𝑛) − 1.0677 (7) 

The number of record-breaking events relative to the total number of events within the sequence could 636 
therefore be used to indicate whether another record-breaking event might be imminent. Further 637 
investigation of this possibility is clearly merited.    638 

Perhaps more importantly, the methods developed here, which are based on the concept of record-639 
breaking events, imply that MMAX for a sequence of induced seismicity will be ever-increasing, unless 640 
and until clear evidence of an upper truncation to the G-R distribution emerges. In practice, many 641 
sequences of induced seismicity generated by long-term injection have shown time-dependent 642 
behaviour where magnitudes increased during the first years of injection, but then stabilised and 643 
decreased over time (Rodríguez‐Pradilla et al., 2022; Watkins et al., 2023; Verdon et al., 2024).  644 

As sequences stabilise and abate, magnitude forecasts based on extreme value estimators will cease to 645 
be appropriate. Clearly, some means of estimating the point at which the rates and magnitudes of 646 
induced seismicity are no longer increasing is required. One method may be to compare the numbers 647 
of record-breaking events when the sequence is run forwards versus when the sequence is run in a 648 
time-reversed order (Mendecki, 2016). If the earthquake sequence is sampling from an underlying 649 
stationary distribution, then we would expect the same number of record-breaking events whether the 650 
sequence is run forwards or backwards. If there are significantly more record-breaking events when 651 
the sequence is run forwards, then this would imply that the hazard is increasing, while if there are 652 
significantly more record-breaking events when the sequence is run in reverse, then this would imply 653 
that the hazard is abating. Again, further investigation of this concept is clearly merited.    654 

6. CONCLUSIONS 655 

We have assessed the performance of induced seismicity forecasting models for MNRB using methods 656 
based on extreme value estimators. These models can be implemented in a number of different ways, 657 
and we have quantitatively compared the performance of these implementations. We compiled a 658 
database of over 80 individual sequences of induced seismicity against which comparisons of model 659 
performance were made. We found that using all events within a catalog or just the record-breaking 660 
events made little difference to the forecasting results, since the models are primarily sensitive to the 661 
largest magnitude events in the sequence.  662 

Estimates of MNRB using the upper limit method with event magnitudes tended to overestimate the 663 
observed magnitudes. However, unlike other models, this model never significantly underpredicted 664 
the observed seismicity, so it has use in defining an upper estimate for MNRB. The models which used 665 
earthquake potency instead of magnitude produced the closest overall fit to the observed magnitudes, 666 
but on occasion did produce significant underestimates of the observed magnitudes. The potency-667 
based models seldom produced overpredictions of the observed magnitudes.  668 

Based on these observations, we conclude that the upper limit magnitude-based model and the jump-669 
limited potency-based models can be combined to give upper and lower estimators for the upcoming 670 
events within an induced seismicity sequence. We found that most of the observed events were much 671 
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closer to the lower magnitude estimator. We used these observations to define an empirically 672 
constrained probability distribution for expected magnitudes relative to the upper and lower estimators. 673 
This distribution was consistent between the different populations of induced seismicity sequences 674 
compiled for our analysis, as well as for sequences that were generated synthetically.    675 

We applied this forecasting approach to two out-of-training-sample (i.e., not used in defining our 676 
empirically constrained distribution) sequences of induced seismicity. We find that in both cases our 677 
modelling approach does a good job of characterising the induced seismicity that occurred. However, 678 
the example from PNR-2 again highlights one of the major challenges in forecasting induced 679 
seismicity: where rapid changes in the underlying geomechanical processes occur (such as a when a 680 
different fault begins to be perturbed), seismicity from earlier within the sequence may not be useful 681 
for forecasting once this change has occurred.    682 

 683 

Data and Resources 684 

The earthquake catalog for Oklahoma was sourced from Park et al. (2022), where the catalog is 685 
provided as a digital supplement. The earthquake catalog for Texas was sourced from the TexNet 686 
database at https://www.beg.utexas.edu/texnet-cisr/texnet/earthquake-catalog (last accessed 687 
14/02/2024). The earthquake catalogs for the sequences described by Watkins et al. (2023) are 688 
available as a digital supplement to that paper. The catalog for PNR-2 is available from the UK 689 
National Geoscience Data Centre at 690 
https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item173104 (last accessed 691 
14/02/2024). The catalog for the Peace River sequence was sourced from the Alberta Earthquake 692 
Dashboard at https://ags-aer.shinyapps.io/Seismicity_waveform_app/ (last accessed 14/02/2024).  693 
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