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ABSTRACT

Induced seismicity magnitude models seek to forecast upcoming magnitudes of induced earthquakes during the
operation of subsurface industries such as hydraulic fracturing, geothermal stimulation, wastewater disposal,
and carbon capture and storage. Accurate forecasting models could guide operational decision-making in real
time, for example operations could be reduced or paused if forecast models indicate that magnitudes may exceed
acceptable levels. Robust and transparent testing of forecasting models is required if they are to be adopted by
operators and regulators of such industries. We develop and test a suite of models based on extreme value
estimators to forecast the magnitudes of upcoming induced seismic events based on observed seismicity. We
apply these models to multiple induced seismicity cases from wastewater disposal in Oklahoma and in western
Texas, as well as other cases of seismicity caused by subsurface fluid injection in North America, Europe, and
China. In total, our testing dataset consists of more than 80 individual sequences of induced seismicity. We find
that all the models produce strong correlation between observed and modelled magnitudes, indicating that the
forecasting provides useful information about upcoming magnitudes. However, some models are found to
systematically over-predict the observed magnitudes, while others tend to under-predict. As such, the combined
suite of models can be used to define upper and lower estimators for the expected magnitudes of upcoming events,
as well as empirically constrained statistical expectations for how these magnitudes will be distributed between
the upper and lower values. We conclude by demonstrating how our empirically constrained distribution can be
used to produce probabilistic forecasts of upcoming induced earthquake magnitudes, applying this approach to
two recent cases of induced seismicity.
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1. INTRODUCTION

Cases of induced seismicity have grown rapidly over the past two decades, associated with the growth
and expansion of oilfield technologies such as hydraulic fracturing, wastewater disposal (WWD), and
natural gas storage (NGS). Emerging low-carbon energy technologies such as geothermal and carbon
capture and storage, which entail the injection of fluids into the subsurface, also carry the potential to
generate induced seismicity.

In severe cases, induced seismicity has caused damage to nearby buildings and infrastructure, and
injuries to nearby people (e.g., Lee et al., 2019; Lei et al., 2019; Campbell et al., 2020). Even where
induced event magnitudes are insufficient to cause damage, they are nevertheless a source of public
concern (e.g., Evensen et al., 2022). A failure to adequately manage induced seismicity during
development of subsurface geo-energy projects has led to the cancellation of individual projects and
sites, and limits or even moratoria being imposed on entire industries. The need to develop methods to
quantify induced seismicity hazard during operations, primarily by estimating what magnitudes of
earthquakes are likely to be generated, is clear.

Our aim in this study is to forecast the growth in earthquake magnitudes as induced seismicity
sequences develop. We do this by tracking the magnitudes of new record-breaking events — events that
are larger than any previous event within a sequence. We refer to these record-breaking magnitudes as
Mnyrp hereafter. The growth of record-breaking events is of particular importance to operators and
regulators of subsurface industries, since their magnitudes will usually determine the largest ground
motions that are generated, and therefore the largest impact to nearby buildings, infrastructure, and
people. If we are able to accurately forecast upcoming record-breaking magnitudes (and preferably, a
probability distribution thereof), this could enable operators to make decisions to ensure the safety of
their activities by, for example, reducing, ceasing, or applying other mitigation actions to their
operations if it becomes likely that unacceptably high magnitudes will be generated.

1.1. Observed versus physically possible induced seismicity magnitudes

The largest record-breaking event within an induced seismicity sequence is, by definition, the largest
event within that sequence. The largest observed magnitude during a sequence of induced seismicity
(or a forecast thereof) is commonly referred to as Myux (e.g., Hallo et al., 2014; van der Elst et al.,
2016; Eaton and Igonin, 2018; Verdon and Bommer, 2021). This is different from the Mu..x parameter
used in tectonic seismic hazard assessment, where it denotes the largest magnitude earthquake that is
physically possible given the particular tectonic circumstances in question (e.g., Mueller, 2010). The
largest possible magnitude represents a truncation to the Gutenberg and Richter (1944) magnitude-
frequency distribution (G-R hereafter). We refer to this truncation magnitude as M”j4x to differentiate
these terms.

In making this distinction, we recognise that there is a fundamental difference between tectonic and
induced seismicity (Bommer, 2022). Tectonic seismicity is driven by processes acting over geological
timescales. Theoretically, all tectonic earthquake populations will eventually be truncated at M7y if
we are only able to wait for long enough observation times. In contrast, induced seismicity is driven
by a human-induced perturbation that is of limited spatial extent and temporal duration. We are
therefore able to observe induced sequences in their entirety, from start to finish. The largest induced
event that actually occurs (Mirsx) Will probably not correspond to the largest possible event at which
the G-R distribution would truncate (M”)4x) unless a sufficient number of induced events have been
generated (Zoller and Holschneider, 2016; van der Elst et al., 2016; Eaton and Igonin, 2018).

There are some cases of induced seismicity, usually in settings with fairly specific and unique
geomechanical conditions, where truncations of the G-R distribution have been observed (e.g., Verdon
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et al., 2018). However, for most sequences of induced seismicity there has been little robust evidence
of truncations to the G-R distribution at high magnitudes, as would be observed if M”)..x were regularly
being reached (e.g., van der Elst et al., 2016; Watkins et al., 2023). It is therefore reasonable in most
cases to treat the magnitudes of an ongoing induced seismicity sequence as being drawn from an
unbounded G-R distribution unless specific evidence to the contrary is available.

Furthermore, the accumulation of tectonic strain that drives tectonic earthquakes is assumed to be
relatively constant (with respect to the timescales of our observations). In contrast, the human-made
perturbations that drive induced seismicity may quickly increase in scale and spatial extent during
operations, for example as injection continues in a given well. As a result, induced seismicity
sequences may be expected to grow as injection progresses.

While van der Elst et al. (2016) suggested that the order in which induced earthquakes occur is random,
subsequent analyses of induced seismicity sequences have shown evidence for progression of event
magnitudes as sequences have grown (e.g., Skoumal et al., 2018; Verdon and Bommer, 2021; Watkins
et al., 2023). Whereas estimates of the maximum possible magnitude, M y4x, should be constant, as
this parameter is controlled by underlying physical conditions (e.g., the size and frictional properties
of nearby faults), forecasts of Mj..x during induced seismicity may be time-dependent, since we should
expect a different maximum magnitude event to occur if, for example, we were to inject a given volume
of fluid for only 1 month, versus injecting the same volume of fluid every month for a period of years.

1.2. Forecasting induced seismicity magnitudes

A range of methods to forecast magnitudes during induced seismicity sequences have been developed.
One approach is to use numerical geomechanical simulations of subsurface processes (e.g., Rutqvist
et al., 2013; Verdon et al., 2015; Dempsey and Suckale, 2017). However, such modelling is often
difficult to apply in practice since a detailed characterisation of the subsurface is required to generate
a model. For many cases, the causative faults on which induced seismicity occurred were not visible
in geophysical surveys acquired prior to the onset of industrial activities (e.g., Eaton et al., 2018; Cesca
et al., 2021; Nantanoi et al., 2022). Even where faults are successfully imaged, quantification of their
mechanical and frictional properties, as required for accurate numerical geomechanical modelling, can
be challenging.

The alternative to physics-based numerical modelling is to use statistics-based approaches. For these
methods the observed population of seismic events is characterised statistically, and the statistical
models are then used to make forecasts of the ongoing seismicity. A commonly used approach is to
characterise a relationship between the rate of seismicity and the volume of fluids injected into (or
removed from) the subsurface at an early stage of operations (e.g., McGarr, 1976, Shapiro et al., 2010;
Hallo et al., 2014; Mancini et al., 2021). The future seismicity can then be forecast by extrapolating
this relationship to a future planned injection (or production) volume. This approach has been used to
forecast seismicity and guide decision-making for several notable cases of induced seismicity,
including the Helsinki St1 Deep Heat project (Kwiatek et al., 2019), the Weyburn Carbon Capture and
Storage Project (Verdon, 2016), and during hydraulic fracturing of the Preston New Road shale gas
wells in Lancashire, UK (Clarke et al., 2019; Kettlety et al., 2021). Verdon et al. (2024) published a
comprehensive appraisal of the performance of the Shapiro et al. (2010) and Hallo et al. (2014) models
across a wide range of WWD-induced seismicity case studies.

1.3. Forecasting induced seismicity magnitudes using extreme value estimators

An alternative approach relies solely on the characterisation of the earthquake population, without any
reference to injection or production rates or any other subsurface information. This approach, applied
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by Mendecki (2016) for mining induced seismicity, is based on the theory of extreme value estimators
developed by Cooke (1979) and is related to methods developed to estimate tectonic M”y.x values
from observed natural earthquake populations (e.g., Kijko, 2004). The relative simplicity of this
method, since it does not require any operational or geological information, is an attractive aspect of
this approach. A limitation is the need for a catalog of observed seismicity to make a forecast.
However, for cases of induced seismicity we are often able to observe the seismicity to a low
magnitude of completeness if dedicated monitoring systems are installed before the start of operations.

Mendecki (2016) applied two approaches to forecasting induced seismicity magnitudes using the order
statistics theory of Cooke (1979). For a random sample of » magnitude observations, M°, drawn from
a constant underlying distribution, the upper limit for future such observations can be estimated as:

=g 3 [(1-8) - (12 e
i=1

where MY represents the event magnitudes sorted into size order, from smallest to largest, such that
MP, is the largest event observed to date, which we refer to as M%y4x.

Alternatively, one can consider the jumps in magnitude between events, AMC, since an estimate for
the next largest event can be obtained by adding the estimated maximum jump, AMj4x, to the observed
largest event. We refer to this estimate as the “jump-limited” magnitude:

My, = My ax + AMyax )

The maximum jump is calculated using the same formulation as Equation 1, but applied to the
distribution of magnitude jumps:

nj—-1 n n:
i\ i+1\"
AMyax = 20M7, — Z [(1 - —) - <1 - ) ]AM,?j_i 3)
i=1 "y "

where AMY; represents the magnitude jumps ordered from smallest to largest, and n; is the number of
jumps. There are several ways in which these methods can be applied in practice to forecast induced
event magnitudes (see Section 2 for further details). For example, since these estimators can be applied
to any quantity, the input to these equations can be magnitudes, seismic moments, or potencies.

Our aim in this study is to forecast the magnitudes of new record-breaking events during induced
seismicity sequences (Myrz). The two magnitude estimators defined above, My, and Mz, provide a
means by which this can be done. We might normally expect Myzp values to follow the jump-limited
estimator, since this explicitly describes the jumps to new record-breaking magnitudes. However, there
is a possibility that the next event to occur is at (or close to) the upper limit value as given by the My,
estimator. We therefore might expect to find, in practice, a distribution of Myrs observations, with
most cases falling close to the M values, but with some events falling closer to the My, estimate.
Hence, our approach is to combine our estimates of My; and M to produce a combined estimator for
Myrs.

We note that in forecasting record-breaking events, the implicit assumption is that induced event
magnitudes will continue to grow during a sequence. In reality, induced seismicity sequences may
stabilise and decrease, either as pressures stabilise in large, open reservoirs (e.g., Verdon et al., 2024),
or in response to successful mitigating actions taken by operators. Clearly, forecasting methods that
include an implicit assumption that new record-breaking magnitudes will occur may not be appropriate
in such circumstances. In Section 5.3 we discuss how it might be possible to identify when an induced
seismicity sequence is decaying such that forecasting new record-breaking events is no longer
appropriate. Likewise, the methods presented in Equations 1 — 3 do not provide any temporal
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constraint — when might a new record-breaking event be expected to occur? Again, in Section 5.3 we
provide some discussion as to how temporal constraints could be introduced.

1.4. The need for performance assessment of induced seismicity forecasting models

If induced seismicity forecasting models are to be used to guide decision-making at active industrial
sites, then there is a clear need for robust, transparent testing of such models. Only through robust
testing can we gain confidence in the performance of models such that they can be relied on to guide
operational decisions that, on the one hand, may compromise significant financial investments (if
projects are abandoned due to potential induced seismicity hazard), while on the other hand could
compromise public safety (if larger magnitude events are allowed to occur without mitigation). The
public often takes a strong interest in the occurrence of induced seismicity, and so model testing must
be transparent and reproducible as a loss of trust of public in ability to safely conduct underground
energy operations easily results in loss of social license to operate and rejection of future projects.

Empirical testing of forecasting models can go beyond simple assessments of performance since results
can be used to feed back into future forecasts. In our case, we anticipate that record-breaking
magnitudes will follow the M, estimator but we allow for the possibility that magnitudes could jump
to the upper limit My; value. As such, the M, and My values may provide lower and upper estimates
for Murs, respectively. A suite of models could be combined to produce an overall estimate (and
preferably, a probability distribution thereof) for upcoming induced event magnitudes. An overall
estimate from a suite of models should consider the observed performances of the different modelling
strategies as applied to large numbers of induced seismicity case studies.

1.5. Study objectives

The objective of this study is to provide a systematic assessment of the performance of the My; and
M estimators as applied to a large number of cases of injection-induced seismicity. We evaluate
several different ways in which these methods can be applied, for example using earthquake
magnitudes versus potencies as the inputs to Equations 1 — 3; and using all observed events and jumps
as inputs versus only the events and jumps that represent new record-breaking events (see Section 2).
In doing so, we investigate the influence of these different formulations on the resulting Myzs forecasts
and quantitatively compare their respective performances.

Our observations across a large number of induced seismicity sequences provide empirical data on the
behaviour of record-breaking magnitudes relative to the My, and M, estimators. These observations
allow us to define an empirically constrained estimator for Muyzs, where the next record-breaking
magnitude is expected to fall within a statistical distribution that is defined based on the My, and M.
estimates.

2. METHODS

Equations 1 — 3 describe two approaches to estimating induced event magnitudes. My; describes the
expected upper limit magnitude based on the population of observed events to date. M, defines the
expected next record-breaking magnitude based on the population of magnitude jumps, with the largest
expected magnitude jump being added to the largest observed event to date.

For both of these estimates, calculations can use either the earthquake magnitudes or seismic moments,
Mo (or potencies, P = Mo/G, where G is the shear modulus). Hereafter, we refer to results computed
using magnitudes with the subscript »ns, and results computed using potencies with the subscript wo.
Furthermore, the magnitudes and magnitude jumps used as inputs to Equations 1 — 3 can be taken from
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the entire event catalog, where M, represents the entire event population sorted into size order and
AMC; represents the magnitude (or potency) jump between every event when the entire population is
sorted into magnitude order, with AM?; then being sorted into size order. Alternatively, one can use an
event population that consists only of the record-breaking events as they appear in a sequence, where
MP; represents the record-breaking events sorted into size order, and AMY; represents the jumps
between the record-breaking events. Hereafter, we refer to calculations using the entire event
population resorted into size order with the subscript 4z (for all events) and calculations using only the
record-breaking events as gp (for record-breaking events). These combinations mean that we have a
total of 8 possible ways in which induced event magnitudes can be estimated. These are summarised
in Table 1.

Table 1: Summary of different model implementations used for Myrs forecasting

Model Model Upper Limit [UL] or Jump- All Events in Size Order [AE] Magnitudes [MM] or
No. Name Limited [JL] formula or Record Breaking only [RB] Potencies [MO]
1 Mur_re mm UL RB MM
2 Mui_rs Mo UL RB MO
3 Mur_ag mm UL AE MM
4 Mui_ae mo UL AE MO
5 M1 re My JL RB MM
6 Mi_re MO JL RB MO
7 M a5 mm JL AE MM
8 Mi_ae mo JL AE MO

We note that dedicated microseismic monitoring arrays often produce large numbers of events (e.g.,
Verdon and Budge, 2018), but even for a very large catalog ranging across several orders of magnitude
we often observe only a few record-breaking events. Thus, the methods based on record-breaking
versus all events represent different approaches to statistical estimates. By definition, the record-
breaking method excludes aftershocks as these are smaller than, and occur after, a mainshock and
therefore do not contribute to record-breaking series. However, the approach based on all events
includes aftershocks in the evaluation of the maximum magnitude while representing whole sequence.

Given the different ways in which these estimators can be applied to induced seismicity sequences,
there is a clear need to produce a quantitative comparison of their relative performance in forecasting
magnitudes during induced seismicity sequences. Several studies have applied various versions of the
My and/or M methods to cases of induced seismicity (Cao et al., 2020; Verdon and Bommer, 2021;
Watkins et al., 2023; Schultz et al., 2023a; Cao et al., 2024). In general, these studies have produced
results that show that, at least from a qualitative perspective, these methods do provide useful
forecasting potential. Whereas Mendecki (2016) formulated these methods in terms of seismic
potency, all of the later studies have used earthquake magnitudes. Cao et al. (2020) applied the My
and Mz methods to the seismicity induced by gas production at Groningen and to a case of hydraulic
fracturing-induced seismicity in North America. In their calculations, they used all events and jumps
within the catalogs, not just record-breaking ones.

Verdon and Bommer (2021) applied the M approach to a compilation of 22 instances of hydraulic
fracturing-induced seismicity, and Watkins et al. (2023) applied the M. approach to 27 cases of
seismicity induced by WWD and NGS. Like Cao et al. (2020), Verdon and Bommer (2021) and
Watkins et al. (2023) used the jumps between all events (when sorted into size order), not just the
jumps to new record-breaking events.

Cao et al. (2024) applied the Mz approach to 15 cases of induced seismicity (mostly consisting of the
same hydraulic fracturing sequences examined by Verdon and Bommer, 2021), but using as input to
their model only the population of jumps that created new record-breaking events. Schultz et al.
(2023a) applied the M approach to the sequence of WWD-induced seismicity at Musreau Lake,



259
260

261
262
263
264
265
266
267
268
269
270
271
272
273

274
275

276
277
278
279
280
281
282
283
284
285

286
287
288
289
290
291
292
293

294
295
296
297
298
299
300
301
302
303
304

Alberta. Like Cao et al. (2024), they used as inputs only the population of jumps that created new
record-breaking events.

For all the above studies, the assessment of model performance has been somewhat unsystematic.
Mendecki (2016) demonstrated his methods by application to a single example of mining-induced
seismicity but did not make any quantitative assessment of model performance. Likewise, Cao et al.
(2020) and Schultz et al. (2023a) simply compared the evolution of the observed earthquakes with the
changing Mgz estimates, noting that the models generally did a reasonable job of fitting the observed
magnitudes. Verdon and Bommer (2021) and Watkins et al. (2023) produced cross-plots of modelled
versus observed My (the largest magnitude within each sequence), while Cao et al. (2024) compared
modelled and observed magnitudes each time a new record-breaking event occurred (Mygrz). These
plots showed evidence for correlation between observed and modelled magnitudes, but also showed
that at times the M, model can underestimate Mygz. As such, there has not yet been any effort to
systematically quantify the performance of these methods, either between the different methods, or for
the same method between different sites. In the following section we introduce the datasets that we
use to assess the performance of each method, before presenting our results in Section 4.

3. DATASETS
3.1. Oklahoma and southern Kansas

WWD in central and northern Oklahoma and southern Kansas (OK-KS hereafter) has increased
significantly over the past two decades, driven primarily by a move towards hydrocarbon production
from reservoirs with high water fractions, with the produced water then requiring disposal (Rubenstein
and Mahani 2015). WWD, primarily into the deep Arbuckle Formation, has caused significant amounts
of induced seismicity (Weingarten et al. 2015), including some of the largest induced events to have
ever been recorded from fluid injection activities, such as the M 5.6 Prague (Keranen et al., 2013) and
M 5.8 Pawnee (Yeck et al., 2017) sequences. Induced seismicity in Oklahoma has also been caused
by hydraulic fracturing (e.g., Holland, 2013; Skoumal et al., 2018; Verdon and Rodriguez-Pradilla,
2023), particularly in the Anadarko Basin. However, our focus here is on central and northern
Oklahoma and southern Kansas, where the bulk of the seismicity is caused by WWD.

In this study we use the earthquake catalog published by Park et al. (2022), who used the PhaseNet
deep learning model (Zhu and Beroza, 2019) to detect earthquakes recorded by publicly available
seismic networks in the OK-KS region. The deep learning model produced a significant increase in
event detection, improving detection thresholds by at least 1 magnitude unit over pre-existing
earthquake catalogs for the region. We adopt a minimum magnitude of completeness of M¢c = 1.5,
based on the magnitude-frequency relationships plotted in Figure 2 of Park et al. (2022). To estimate
potencies from the given magnitudes, we adopt a single value of G =20 GPa (this value is adopted for
all sequences in our study).

There are 70 earthquakes in the Park et al. (2022) catalog with magnitudes > 4.0. Some of these events
occur in close spatial proximity to each other such that they can be considered to be part of the same
sequence. Park et al. (2022) identified clear, discrete fault structures that were responsible for hosting
most of the larger magnitude events. These structures typically had lengths of between 5 — 20 km (see
Figures 1 and 2 of Park et al., 2022). Where multiple M > 4.0 events were located within 10 km of
each other, we treated these as being part of the same sequence of induced events. In doing so, we
identified 24 individual sequences in which induced event magnitudes reached or exceeded M 4.0 (see
Figure 1). We take these 24 sequences as test datasets for our analysis. For each case, we define a
20 x 20 km square around the M > 4.0 event (or the largest event for sequences which contain more
than one M >4.0 event). All earthquakes within this square are taken as representing part of the
sequence and used to perform our M)..x forecasting. The M > 4.0 events, and the 20 x 20 km squares



305  around them, are shown in Figure 1. The choice of dimensions (20 % 20 km) was somewhat arbitrary,
306  but we found that such dimensions were usually sufficient to capture the bulk of the seismic events
307  that occurred on each of the discrete fault strands that hosted larger events, as identified by Park et al.
308 (2022).
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311 Figure 1: Map of the OK-KS study area. Black dots show all earthquakes with M > 1.5 and coloured
312 circles show events with M > 4.0. The solid boxes show the 20 % 20 km blocks around each of the
313 sequences containing M > 4.0 events, while the dashed boxes show 20 x 20 km blocks in which 500
314 events were recorded with no M > 3.5 events. The box colours used in this figure correspond to the
315 marker colours used in Figure 3.
316

317  In testing induced seismicity forecasting models, there can be a tendency to focus on cases where
318  larger magnitude events occurred, since these cases tend to attract the most attention (from the public
319  and policy makers, as well as from academics). However, comprehensive testing should include
320  sequences that did not reach larger magnitudes, since our objective is to develop models that can
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differentiate between sequences that do, and that do not, escalate to higher magnitude events. Hence,
in addition to the 24 sequences with M > 4.0 events, we identify the same number of cases where
magnitudes did not exceed M 3.5, selecting twenty-four 20 x 20 km blocks at random within the study
area that contained at least 500 events but no events with M > 3.5. To do so, we randomly generated
block positions and rejected those that did not meet these criteria, continuing until we had 24 cases.
The 24 blocks without larger magnitude events are also shown in Figure 1.

There is some overlap between the different blocks that are treated hereafter as discrete induced
seismicity sequences, meaning that some events are included in more than one forecast. This will create
some partial dependence between results from individual sequences. However, in our view a smaller
event that is mid-way between the future locations of two different larger events could be reasonably
considered to be a precursor to either or both, and so it is reasonable that such events could be included
within the forecasts for both larger events, and this partial dependence cannot therefore be avoided.

3.2. Permian Basin, western Texas

Induced seismicity has been recognised in the Permian Basin of western Texas (WTX hereafter) since
the 1970s (Davis and Pennington, 1989). Rates of seismicity in the basin have increased substantially
since 2015 (Skoumal et al., 2020), associated with WWD and hydraulic fracturing. Given the co-
location of these activities, distinguishing causality between WWD and hydraulic fracturing can be
challenging, although the bulk of the seismicity is thought to have been caused by WWD (Grigoratos
et al., 2022). Three M > 5.0 events have been induced in this basin: the March 2020 M 5.0 event near
to the city of Pecos in Reeves County (Skoumal et al., 2021), the November 2022 Coalson Draw M 5.4
event in western Reeves County, and the December 2022 M 5.2 event in Martin County, just to the
north of the city of Midland (Hennings and Young, 2023).

In this study we use the TexNet earthquake catalog (Savvaidis et al., 2019), with data running from
the start of 2017 until April 2023. We computed the minimum magnitude of completeness by
evaluating the lowest magnitude at which the cumulative magnitude-frequency distribution was
consistent with the G-R distribution, as assessed by the Kolmogorov-Smirnov test with an acceptance
criterion of 10 % (Clauset et al., 2009), which gave M¢ = 2.0. There are 48 events for which M >4.0
(Figure 2). Our examination of the temporal and spatial evolution of the seismicity identified 11
individual sequences in which induced event magnitudes reached or exceeded M 4.0. Much like for
our OK-KS datasets, we define 20 x 20 km squares around each sequence and use all events within
these blocks to perform our Myzp forecasting. We then identify an equal number (i.e., 11) of 20 x 20
km blocks containing at least 100 events (we use a lower criterion here recognising the lower number
of events in the TexNet catalog compared to the Park et al. (2022) catalog for OK-KS) but no events
larger than M 3.5, in order to test Mgz model performance for cases where larger magnitude events
did not occur.

3.3. Watkins et al. (2023) sequences

Watkins et al. (2023) published M).x forecasts using the My so my formulation for more than 20
individual sequences of WWD and NGS-induced seismicity. Some of the Watkins et al. (2023)
sequences are already included in our OK-KS and WTX datasets described in the previous sections
(Reeves and Cogdell in Texas, Cushing, Fairview, Guthrie-Langston, Pawnee and Prague in
Oklahoma, Milan and Harper in Kansas), while for some older sequences with lower levels of
monitoring, the largest events occurred before a sufficient number of events were available to compute
Mnyrp estimates (e.g., the Cordel sequence in Alberta). This left 16 additional sequences which we were
able to include in our analysis, including: the Azle-Reno, Dallas-Fort Worth, Venus, Timpson and
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Irving sequences in eastern Texas (Hennings et al., 2021; Frohlich et al., 2014); the Guy-Greenbrier
sequence in Arkansas (Horton, 2012); the Youngstown sequence in Ohio (Kim, 2013); the Paradox
Valley, Greeley and Raton Basin sequences in Colorado (Block et al., 2014; Yeck et al., 2016; Nakai
et al., 2017); the Eagle West, Graham, and Musreau Lakes sequences in western Canada (Horner et
al., 1994; Hosseini and Eaton, 2018; Li et al., 2022); the Rongchang sequence in the Sichuan Basin
(Wang et al., 2020); the Castor project in the Gulf of Valencia, Spain (Cesca et al., 2021); and the
Puerto Gaitan sequence, Colombia (Molina et al., 2020). For each of these sequences, we use the
earthquake catalogs published in the Supplementary Materials of Watkins et al. (2023). We refer to
these sequences as the W23 cases hereafter.
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Figure 2: Map of the western Texas study area. Black dots show all earthquakes with M > 1.0 and
coloured circles show events with M > 4.0. The solid boxes show the 20 x 20 km blocks around each
of the sequences containing M > 4.0 events, while the dashed boxes show 20 x 20 km blocks in which

100 events were recorded with no M > 3.5 events. The box colours used in this figure correspond to

the marker colours used in Figure 4.

3.4. Application

For the OK-KS and WTX datasets we compute Myzp values at intervals of 0.5 months, starting at the
time when at least 10 events above the magnitude of completeness within the sequence have been
recorded, and continuing for the duration of the available catalog. For the W23 sequences, the
timespans of each sequence are highly variable — we therefore compute Myrz values at 1,000 evenly-
spaced intervals between the first and final event within each sequence. At each time step we estimate
the next record breaking magnitude in a pseudo-prospective manner, using all the events in the
sequence that occurred prior to a given time to estimate Mygp for the next time interval.
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Our objective is to assess the forecast performance as each sequence evolves. We therefore make
comparisons between observed and modelled magnitudes each time there is a new largest event within
the sequence. Each new largest event within the sequence is treated as an observed record-breaking
event, MCyrp. The MC\rp values are compared against the Mz values calculated at the timestep prior
to when the M°yzp event occurred. For the calculations made using potencies, the modelled values are
converted back to magnitude to facilitate a comparison with the observed magnitudes.

4. RESULTS

Figures 3, 4 and 5 show our results, comparing the observed and forecast Mz and Myzs values, using
each of the 8 methods described in Table 1, for the sequences from OK-KS (Figure 3), WTX (Figure
4), and the W23 sequences (Figure 5). In total we have applied our models to 86 sequences (48 in OK-
KS, 22 in WTX, 16 from W23), with a combined total of 331 individual record-breaking events within
these sequences (205 from OK-KS, 72 from WTX, 54 from W23). The time evolution of every
individual sequence, and the corresponding modelled Mz values, are provided in the supplementary
materials (Section S3).
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Figure 3: Results for OK-KS sequences comparing observed and modelled magnitudes for each of
the Mngrp forecasting methods listed in Table 1. Marker colours correspond to sequences within each
box shown in Figure 1.

We quantify the model performance using several metrics. We compute the root-mean-squared (RMS)
error between modelled and observed magnitudes, orus, the Pearson correlation coefficient between
modelled and observed magnitudes, 7, and the gradient of the line of (least squares) best-fit, m. A well-
performing model should minimise orys and maximise 7, and have a best-fit gradient close to 1.0,
implying a 1:1 relationship between Myzs and M°ygs. Additionally, in most applications we anticipate
that Mnrs forecasting will be used to guide operational decision making in order to avoid unwanted
large events. It is therefore of particular importance that models do not make large underpredictions,
such that the actual seismicity significantly exceeds what has been forecast by the model. We therefore
compute Nyp, the percentage of M%rs instances where the forecast Mygp value was a significant
underprediction with Myzg < Mxrp — 0.5. These metrics are listed in Table 2 for the OK-KS, WTX
and the W23 sequences respectively.
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Figure 4: Results for WIX sequences comparing observed and modelled magnitudes for each of the
Mnrs forecasting methods listed in Table 1. Marker colours correspond to sequences within each box
shown in Figure 2.

In general, we observe strong correlation between the modelled and observed Myrz values, implying
that these methods all provide useful forecasting information for induced seismicity magnitudes, and
could therefore be used as part of a decision-making strategy to manage induced seismicity. The
performance of these models is generally better than that found by Verdon et al. (2024) for commonly
used volume-based forecasting models, having higher correlation coefficients between modelled and
observed magnitudes, lower RMS errors (except for the Mur rs mm and Mur rs mm models, see below),

and fewer cases where models produced significant underpredictions of upcoming magnitudes.
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Figure 5: Results for the W23 sequences comparing observed and modelled magnitudes for each of
the Mygp forecasting methods listed in Table 1.
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Table 2: Performance metrics for OK-KS, WTX and W23 sequences.

Model ‘ ORMS ‘ r ‘ m ‘ Nup [%]
OK-KS
MuL rRB MM 1.84 0.86 1.27 0
Mut_rB MO 0.41 0.86 0.76 14.2
MuL AE MM 1.67 0.86 1.24 0
Mut_ae Mo 0.41 0.85 0.76 14.2
MiL rB MM 0.93 0.75 1.11 34
ML rB MO 0.37 0.87 0.82 12.7
ML AE MM 0.47 0.81 0.85 7.3
Mi_AE MO 0.41 0.85 0.78 14.6
WTX
MuL rRB MM 2.06 0.90 1.23 0
MuL rB MO 0.32 0.92 0.78 12.5
MuL AE MM 1.84 0.91 1.26 0
MuL AE Mo 0.32 0.92 0.78 12.5
ML rB MM 0.89 0.83 1.35 2.8
ML rB MO 0.32 0.91 0.81 12.5
ML AE MM 0.54 0.80 0.98 5.6
ML AE MO 0.32 0.91 0.79 12.5
w23

MuL rRB MM 2.37 0.93 1.62 0
MuL rB MO 0.34 0.94 0.93 11.1
MuL AE MM 243 0.92 1.66 0
MuL AE Mo 0.34 0.94 0.93 11.1
ML rB MM 0.81 0.83 1.04 3.7
ML rB MO 0.34 0.93 0.94 11.1
ML AE MM 0.59 0.85 1.05 3.7
MiL AE MO 0.34 0.94 0.93 9.3

More detailed inspection of Figures 3 — 5 and Table 2 leads us to the following conclusions, all of
which are consistent between the OK-KS, WTX, and W23 sequences.

Using re-sorted magnitudes or just record-breaking events does not significantly change
forecasting performance. The use of the entire earthquake catalog, versus solely using record-
breaking events (or jumps to record-breaking events), was a key point of difference between Cao et al.
(2020), Verdon and Bommer (2021) and Watkins et al. (2023) on the one hand, and Cao et al. (2024)
and Schultz et al. (2023a) on the other. However, comparison of panels (a) vs (¢), (b) vs (d), (¢) vs (g),
and (f) vs (h) of Figures 3 — 5 show that these different implementations in fact produce very similar
results. From examination of Equations 1 and 3 this outcome is unsurprising since only the first few
terms of the weighting applied to the summation of the magnitudes (or jumps), given by:

)

n

are significant (Mendecki, 2016). The first weightings correspond to the largest magnitudes (or
magnitude jumps), which tend to be magnitudes (or jumps) that produce record-breaking events.
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Figure 6 plots the value of W; as a function of i and n. The weighting term drops to values of 0.01 or
less after the 4™ term in the summation (the weighting applied to the 4"-largest magnitude or jump).
The fact that only a few values are required to produce stable magnitude estimates is an additional
advantage of this approach, since it can be applied even where only a few initial events have been
observed in a new sequence.

i-th value

10 20 30 40 50

Figure 6. Value of the weighting W applied within the summation term in Equations 1 and 3 (as
defined in Equation 4) as a function of i. The contours here show values of logio(W). For any value
of n, the weighting for terms where i > 4 is less than 0.01.

Upper limit models using magnitude provide a credible upper limit. The Mv; 4z s and Moz, g v
models (panels (a) and (c) in Figures 3 — 5) did not produce any significant underpredictions (Nyp = 0).
This is notable given that we have applied it to 86 individual earthquake sequences. Hence, the
UL MM values (upper limit calculations using magnitudes) do seem to provide a credible upper limit
to induced earthquake magnitudes.

However, while these values never produced underpredictions, they did not provide a good fit to the
evolution of record-breaking magnitudes within sequences, tending to produce significant
overpredictions in most cases. This is to be expected since the My; method is formulated to estimate
the largest possible value within a distribution, not the expected next record-breaking event. As a
result, the Mur, 4 v and Mur_re ws models gave the largest orus values, and best-fit relationships with
the gradient m significantly higher than 1.0. That said, the correlation coefficients for the Muz,_4x v
and Mu:r_rs mm models are not significantly worse than those of other models, implying that the scatter
between modelled and observed magnitudes is no worse than for the other models, just the fit is not
along the 1:1 line, resulting in systematic overprediction.

Next record-breaking models using magnitudes produce the highest scatter. Although the
Mg v and My, ey models (panels (e) and (g) in Figures 3 — 5) produced reasonable fits between
observed and modelled magnitudes, with the gradient m close to 1.0, these models had the lowest
correlation coefficients of all the models, and the highest orus values with the exception of the
overpredicting Mur, 4z mv and Mur_re mr models, as described above. The My, 4z v and Mz rp vm
models therefore produced the highest scatter between modelled and observed magnitudes and may
therefore have the least utility in forecasting. This is ironic given that this approach has been the most
widely used to date, forming the basis of results presented by Cao et al. (2020; 2024), Verdon and
Bommer (2021), Watkins et al. (2023) and Schultz et al. (2023a).
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Potency-based models have the least scatter, but significantly underpredict on occasion. All four
of the models that used earthquake potencies, M, UL_AE_MO, M, UL _RB_MO» MJL_AE_M(), and MJL_RB_MO (panels
(b), (d), (f) and (h) in Figures 3 — 5) produced very similar results. These models had the lowest orus
values and highest correlation coefficients, indicating that these models had low scatter and the closest
match between modelled and observed magnitudes. However, these models also produced the largest
number of underpredictions, with between 10 — 15 % of events being underpredicted by more than 0.5
magnitude units. We surmise that in most cases where sequences are evolving relatively gently, the
potency-based models perform well. However, they do not perform as well in capturing the more
unusual sequences where a sharp increase in magnitudes takes place.

5. DISCUSSION
5.1. Towards an empirically constrained probabilistic model

Our results show that the upper limit magnitude-based models, Mur,_4£ s and Mur, gz v, provided
credible upper bounds for the actual event magnitudes, having no significant underpredictions after
application to a large number of sequences. However, in most cases these models overpredicted the
observed events. In contrast, the potency-based models (Mur 4z mo, Mur rs Mo, My ag mo, and
M re mo) generally produced a good fit to the observed magnitudes, but occasionally produced
significant underpredictions.

From this, it is reasonable to propose a composite approach to forecasting event magnitudes where
Mur,_ae ym or Mur,_rs v 1s used provide an upper estimator for the expected magnitude of the next
record-breaking event and Muz_4r mo, Mur_rs Mo, Mt ae mo, O Mz rp mo is used to provide a lower
estimator for the expected magnitude. Hereafter, we use My rs sy for the upper estimator and
M1 4z mo for the lower estimator, referred to hereafter as Myr and M respectively.

The probability distribution of event magnitudes between these estimators can be evaluated through
empirical calibration with our observed seismicity. For each event, we normalise each observed record-
breaking event magnitude relative to the M;r and Myz estimators at the time of the event’s occurrence:

0
o _ Myre — Mg

M2 = ®)
N Myg — Mg

We then examine the distribution of these normalised magnitudes — where do events typically fall with
respect to the upper and lower magnitude estimators? Our results for each of our studies are shown in
Figure 7. The distributions of My are consistent between the three sets of sequences that we studied.
Most values are close to 0, i.e., they match the modelled lower estimator values, M%vrs = M.
However, the distribution has a tail of higher values extending towards 1, i.e., where observed
magnitudes reach towards the higher estimator values, Mygs = Myz.

We examine the fit of various statistical distributions to our observations, including lognormal, a
Gumbel, and Generalised Extreme Value (GEV) distributions. We further test the performance of these
distributions when applied to synthetically generated sequences. These results are shown in our
Supplementary Materials (Sections S1 and S2). The consistency found for My between our different
case studies and synthetic models enables us to construct an empirically constrained probabilistic
model for induced seismicity forecasting using extreme value estimators. We find that our observations
are reasonably approximated either by a shifted lognormal distribution with a mean of v =-1.4, a
deviation of ozv = 0.6, and a shift of ;v = 0.2, or a GEV distribution with shape parameter k¢zr = 0.23,
scale parameter ogzy = 0.1, and location parameter ucey = 0.0. Hereafter we use the GEV distribution
as providing the best fit to our combined observations (see Supplementary Materials Section S1).
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Figure 7: Distribution of normalised observed magnitudes M°y (bars), where the observed
magnitudes are normalised relative to the modelled upper and lower estimators, for the OK-KS (a),
WTX (b), and W23 (c) sequences, and for all observations combined (d). The red and blue lines show

the shifted lognormal and GEV distributions that we adopt to approximate the observed
distributions.

For a given sequence of seismicity, we compute the Myr and M;r estimators at a given time. Having
computed Myr and Mig, we can compute the probabilities for the next largest magnitude event that
will occur in the sequence. We use Equation 5 to normalise magnitudes relative to Myg and Mg, and
then estimate the probability of occurrence for any magnitude event from the GEV distribution with
scale, shape and location parameters described above.

Our synthetic testing (Supplementary Materials Section S2) shows that the observed distributions are
consistent with situations where no upper truncation is applied to the G-R distribution from which the
events are drawn (or where the magnitude of truncation is much larger than the observed event sizes,
such that is has, in effect, no impact on the simulated magnitudes). Where a truncation is applied to
our synthetic tests, the M°y values are systematically shifted towards the lower estimator (M°y = 0),
such that the representative distributions defined above are no longer appropriate. The similarities
between our observed distributions and those generated by an untruncated model, alongside past
studies which have generally failed to find significant evidence for magnitude truncations in most
induced seismicity cases (e.g., van der Elst et al., 2016) suggest that our approach is reasonable with
respect to this caveat. However, if clear upper truncations to the G-R distribution are observed for
induced seismicity sequences (e.g., Verdon et al., 2018), then alternative methods for Mj..x estimation,
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such as those that explicitly assume an upper-truncated G-R distribution (e.g., Kijko and Sellevoll,
1989; Pisarenko et al., 1996; Holschneider et al., 2011), may be preferable.

5.2. Application to out-of-sample cases

We demonstrate this approach by application to two notable cases of induced seismicity: from
hydraulic fracturing at the Preston New Road PNR-2 well in Lancashire, England in 2019 (Kettlety et
al., 2021), and from seismicity associated with WWD activities in north-western Alberta, near to the
town of Peace River (Schultz et al., 2023b). The PNR-2 sequence is notable because its occurrence led
the UK government to impose a moratorium on hydraulic fracturing, primarily because of the
perceived inability to “accurately predict the probability or magnitude of earthquakes linked to
fracking operations” (BEIS, 2019).

The Peace River sequence reached a magnitude of M 5.6 in November 2022. If induced (the nature of
this event is still disputed, see Salvage et al., 2024) it would be the largest magnitude induced event in
the Western Canada Sedimentary Basin. This sequence is useful for our purposes since, given when it
occurred, it was not included in the sequences compiled by Watkins et al. (2023), and so it represents
an out-of-sample test, since the sequences in W23 were used to generate our empirically constrained
distribution of M.

For the PNR-2 sequence, we use the corrected moment magnitudes published by Kettlety and Butcher
(2022) — note that these My values are different from the M; values published by Kettlety et al. (2021).
For the Peace River sequence, we use earthquakes from the Alberta Geological Survey database (AGS,
2020). Our results are shown in Figure 8, where the observed seismicity is compared with the forecast
values. The solid lines in Figure 8 show the magnitude that has a 50 % chance of exceedance by the
next record-breaking event, Msy, while the dashed lines show Mys and Mys (i.e., the magnitude that has
a 95 % chance of being exceeded, and the magnitude that has a 5 % chance of being exceeded by the
next record-breaking event).
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Figure 8: Application of the empirically constrained forecasting model to the Preston New Road
PNR-2 (a) and Peace River (b) sequences. Observed events are marked with grey dots. The solid line
marks Msg, while the dashed lines mark Mys and Mys. For PNR-2, the bursts of seismicity associated
with each discrete hydraulic fracturing interval (Stages 1-7) are marked with grey arrows.

For the Peace River case, the forecast values are stable for the duration of the sequence. The M 5.6
event that occurs is close to the Mys value, indicating a 5 % likelihood of this magnitude being reached
or exceeded.
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For PNR-2, the M 2.8 event is well within the forecast range, and close to the M5y value at the time it
occurred. Hydraulic fracturing at PNR-2 was conducted as a series of discrete injection stages,
typically lasting between 1 — 2 hours, with only one injection stage taking place each day. Stage 7 was
the last stage to have been stimulated, with the M 2.8 event occurring roughly 72 hours after this stage
had been completed (Kettlety et al., 2021). The forecast values prior to Stage 7 are therefore of
particular interest since these values could have informed the operational decision to perform this
stage. At the time that injection of Stage 7 began, the likelihood of reaching or exceeding M 2.8 was
12 %. The forecasting model therefore provides a reasonable characterisation of the hazard at the time
that the decision to proceed with Stage 7 was made.

Interestingly, the event that most exceeds the forecast is the M 1.9 event that followed Stage 6. At the
start of injection of Stage 6, the likelihood of reaching or exceeding M 1.9 was only 1 %. Kettlety et
al. (2021) identified that Stage 6 saw a significant change in geomechanical behaviour in the reservoir,
with microseismicity beginning to occur along the fault structure that ultimately hosted the M 2.8
event. Kettlety et al. (2021) interpreted the microseismicity prior to Stage 6 as being associated with
hydraulic fracture propagation (and the reactivation of some natural fracture networks), whereas
microseismicity from Stage 6 onwards begins to represent the onset of reactivation of a critically
stressed fault.

This highlights one of the challenges with induced seismicity forecasting — where a sudden change in
the underlying geomechanical behaviour takes place, events from prior to this change may not be
useful in forecasting subsequent behaviour. As described in our Methods, the My, and M), estimators
assume that record-breaking magnitudes are sampled from a stationary underlying distribution. We
note that this caveat also applies to other induced seismicity forecasting methods that assume constant
scaling between injection rates and induced seismicity rates (e.g., Shapiro et al., 2010; Hallo et al.,
2014; Mancini et al., 2021).

It is unclear the degree to which this assumption should be expected to hold for induced seismicity
sequences. For WWD, injection rates are typically constant over years, creating a slow and steady
pressure increase, such that a relatively constant underlying distribution of seismicity might be
expected. However, Verdon et al. (2024) found evidence for accelerating rates of seismicity relative
to injection volumes during the early stages of WWD-induced seismicity onset, which then stabilised
at later times.

The successful performance of the My, and M, estimators in our study suggests that the assumption
of stationarity is sufficiently satisfied, at least on the timescale of intervals between record-breaking
events in these WWD-induced sequences. In contrast, for hydraulic fracturing at PNR-2, the
microseismicity associated with hydraulic fracture propagation during the earlier stages does not do a
good job of forecasting what happened as the larger fault began to reactivate. Once this fault
reactivated, the forecasting model using the seismicity from this point onwards does a good job of
forecasting the subsequent seismicity that developed.

These observations show that care should be taken to fully interpret and understand the geomechanical
behaviours that can be manifested in microseismic event observations when using statistical models
to forecast induced seismicity. It may be necessary to assess whether the underlying assumptions —
such as stationarity and constancy of scaling between injection rate and seismicity rate — are reasonable
in a particular case. These assumptions may not be appropriate in situations, such as at PNR-2, where
a new fault structure is encountered by a growing injection pulse and begins to reactivate.

5.3. Time dependent forecasting

The forecasting methods developed here do not provide any estimate of whether a new record-breaking
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event will occur and, if so, when it will occur. The timing of the next record-breaking event could be
estimated from the growing number of earthquakes within a sequence. The expected number of record-
breaking events, N.», in a population of n events can be approximated, assuming that the events are
independent and drawn from a constant underlying distribution, as (Arnold et al., 1998; Nevzorov,
2001):

Ny, = In(n) + 0.577215 (6)
with the variance given by:
Var(N,,) = In(n) — 1.0677 @)

The number of record-breaking events relative to the total number of events within the sequence could
therefore be used to indicate whether another record-breaking event might be imminent. Further
investigation of this possibility is clearly merited.

Perhaps more importantly, the methods developed here, which are based on the concept of record-
breaking events, imply that My..x for a sequence of induced seismicity will be ever-increasing, unless
and until clear evidence of an upper truncation to the G-R distribution emerges. In practice, many
sequences of induced seismicity generated by long-term injection have shown time-dependent
behaviour where magnitudes increased during the first years of injection, but then stabilised and
decreased over time (Rodriguez-Pradilla et al., 2022; Watkins et al., 2023; Verdon et al., 2024).

As sequences stabilise and abate, magnitude forecasts based on extreme value estimators will cease to
be appropriate. Clearly, some means of estimating the point at which the rates and magnitudes of
induced seismicity are no longer increasing is required. One method may be to compare the numbers
of record-breaking events when the sequence is run forwards versus when the sequence is run in a
time-reversed order (Mendecki, 2016). If the earthquake sequence is sampling from an underlying
stationary distribution, then we would expect the same number of record-breaking events whether the
sequence is run forwards or backwards. If there are significantly more record-breaking events when
the sequence is run forwards, then this would imply that the hazard is increasing, while if there are
significantly more record-breaking events when the sequence is run in reverse, then this would imply
that the hazard is abating. Again, further investigation of this concept is clearly merited.

6. CONCLUSIONS

We have assessed the performance of induced seismicity forecasting models for Myzs using methods
based on extreme value estimators. These models can be implemented in a number of different ways,
and we have quantitatively compared the performance of these implementations. We compiled a
database of over 80 individual sequences of induced seismicity against which comparisons of model
performance were made. We found that using all events within a catalog or just the record-breaking
events made little difference to the forecasting results, since the models are primarily sensitive to the
largest magnitude events in the sequence.

Estimates of Myzp using the upper limit method with event magnitudes tended to overestimate the
observed magnitudes. However, unlike other models, this model never significantly underpredicted
the observed seismicity, so it has use in defining an upper estimate for Muyrz. The models which used
earthquake potency instead of magnitude produced the closest overall fit to the observed magnitudes,
but on occasion did produce significant underestimates of the observed magnitudes. The potency-
based models seldom produced overpredictions of the observed magnitudes.

Based on these observations, we conclude that the upper limit magnitude-based model and the jump-
limited potency-based models can be combined to give upper and lower estimators for the upcoming
events within an induced seismicity sequence. We found that most of the observed events were much
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closer to the lower magnitude estimator. We used these observations to define an empirically
constrained probability distribution for expected magnitudes relative to the upper and lower estimators.
This distribution was consistent between the different populations of induced seismicity sequences
compiled for our analysis, as well as for sequences that were generated synthetically.

We applied this forecasting approach to two out-of-training-sample (i.e., not used in defining our
empirically constrained distribution) sequences of induced seismicity. We find that in both cases our
modelling approach does a good job of characterising the induced seismicity that occurred. However,
the example from PNR-2 again highlights one of the major challenges in forecasting induced
seismicity: where rapid changes in the underlying geomechanical processes occur (such as a when a
different fault begins to be perturbed), seismicity from earlier within the sequence may not be useful
for forecasting once this change has occurred.

Data and Resources

The earthquake catalog for Oklahoma was sourced from Park et al. (2022), where the catalog is
provided as a digital supplement. The earthquake catalog for Texas was sourced from the TexNet
database at https:/www.beg.utexas.edu/texnet-cisr/texnet/earthquake-catalog  (last accessed
14/02/2024). The earthquake catalogs for the sequences described by Watkins et al. (2023) are
available as a digital supplement to that paper. The catalog for PNR-2 is available from the UK
National Geoscience Data Centre at
https://webapps.bgs.ac.uk/services/ngdc/accessions/index.html#item 173104 (last accessed
14/02/2024). The catalog for the Peace River sequence was sourced from the Alberta Earthquake
Dashboard at https://ags-aer.shinyapps.io/Seismicity waveform_app/ (last accessed 14/02/2024).
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