Bulletin of the Seismological Society of America, Vol. 108, No. 2, pp. 690-701, April 2018, doi: 10.1785/0120170207

Examining the Capability of Statistical Models to Mitigate Induced
Seismicity during Hydraulic Fracturing of Shale Gas Reservoirs

by James P. Verdon and Jessica Budge

Abstract Injection into the subsurface is carried out by industry for a variety of
reasons, for example, storing wastewater, enhanced oil recovery, and hydraulic frac-
ture stimulation. By increasing subsurface pressures, injection can trigger felt seismic-
ity (i.e., sufficient magnitude to be felt at the surface) on pre-existing faults. As the
number of cases of felt seismicity associated with hydraulic fracturing (HF) has
increased, strategies for mitigating induced seismicity are required. However, most
hydraulic stimulation activities do not induce felt seismicity. Therefore, a mitigation
strategy is required that is capable of differentiating the normal case from abnormal
cases that trigger larger events. In this article, we test the ability of statistical methods
to estimate the largest event size during stimulation, applying these approaches to two
datasets collected during hydraulic stimulation in the Horn River Shale, British
Columbia, where HF was observed to reactivate faults. We apply these methods
in a prospective manner, using the microseismicity recorded during the early phases
of a stimulation stage to make forecasts about what will happen as the stage continues.
We do so to put ourselves in the shoes of an operator or regulator, where decisions
must be taken based on data as it is acquired, rather than a post hoc analysis once a
stimulation stage has been completed. We find that the proposed methods can provide
a reasonable forecast of the largest event to occur during each stage. This means that
these methods can be used as the basis of a mitigation strategy for induced seismicity.

Electronic Supplement: Simulated MM, values for each injection stage.

Introduction Although much of the recent focus has been on
wastewater disposal, several cases of HF-induced seismicity

Hydraulic Fracturing-Induced Seismicity (HF-IS) have been identified (e.g., B.C. Oil and Gas Com-

Any human activity that alters the stress state in the Earth’s
crust has the potential to induce seismic activity. Induced seis-
micity has been associated with mining (e.g., Li et al., 2007),
impounding reservoirs (e.g., Gupta, 1985), conventional oil
and gas extraction (e.g., Segall, 1989), and subsurface fluid
injection, whether for hydraulic fracturing (HF; e.g., Bao
and Eaton, 2016), disposal of waste fluids (e.g., Keranen et al.,
2013), carbon capture and storage (e.g., Stork et al., 2015), or
geothermal energy (e.g., Héring ef al., 2008).

It has been conclusively demonstrated that injecting
fluids into the subsurface can trigger seismicity, where in-
creased pore-fluid pressures lead to the activation of critically
stressed faults (e.g., Raleigh ef al., 1976). However, it should
be noted that the overwhelming majority of such operations
are not thought to cause earthquakes. Nevertheless, as the
above practices have increased in scale and become more
widespread, the issue of injection-induced seismicity has
grown in significance.
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mission 2012, 2014; Clarke et al., 2014; Darold et al., 2014;
Friberg et al., 2014; Schultz, Mei, et al., 2015; Schultz,
Stern, et al., 2015; Skoumal et al., 2015; Atkinson et al.,
2016; Bao and Eaton, 2016; Wang et al., 2016). It is vital
that our understanding of HF-IS improves such that indus-
trial operators are capable of mitigating against triggering
seismic activity. However, for many of these case examples
monitoring arrays were not deployed until after large events
had occurred, or available monitoring arrays consisted solely
of regional networks, where the nearest station may have
been many kilometers from the site. This means that there
is often little useful data that can be used to study the proc-
esses that happened in the lead-up to these events, and
thereby which mitigation steps might have been possible.
The number of cases of HF-IS is very small when
compared with the overall number of wells that have been
hydraulically stimulated. As such, any mitigation scheme
should be capable of quickly differentiating the normal case,
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where HF does not cause fault reactivation leading to larger
events, from the abnormal case where large events may be
triggered, and therefore where mitigating strategies such
as reducing injection volumes or ceasing injection altogether
may be necessary.

Mitigation of HF-IS

At present, where regulations pertaining to HF-IS have
been applied, they take the form of traffic-light schemes
(TLSs), whereby operators take actions based on the magni-
tude of events induced during operations. These schemes
have the advantage of being relatively simple to administer
and can be understood by the public. However, they are
somewhat reactive in their nature (as opposed to proactive):
an operational response is required, such as reducing or stop-
ping injection, only after an event of a given size has
occurred.

The purpose of this article is not to argue against the use
of TLSs, which can play a useful role in the regulation of
HF-IS. However, it is our view that, in addition to complying
with TLS regulations, operators should seek to mitigate
induced seismicity in a more proactive manner. If nothing
else, operators will wish to ensure that they remain within
the specified TLS thresholds during their operations because
reaching “red lights” entails the imposition of operational
constraints, and may also affect operator reputation and
confidence with the public.

To take a proactive approach to HF-IS, operators must
develop the capacity to model their activities, allowing them
to make forecasts about the HF-IS that may occur as their
operations continue. In the broadest sense, two types of mod-
eling approaches are available: physical and statistical. Physi-
cal models aim to simulate the processes that occur during
hydraulic stimulation, usually using numerical methods such
as finite elements (e.g., Maxwell et al., 2015), discrete ele-
ments (e.g., Yoon et al., 2014), rate and state approaches based
on modeled stress changes (e.g., Hakimhashemi er al., 2014),
or by resolving modeled stress changes onto pre-existing fault
and fracture networks (e.g., Verdon et al., 2015). However,
such models often require extensive site characterization to
identify and characterize both nearby faults and the local stress
state. Such models also come with a significant number of free
parameters that must be tuned to provide a reasonable repre-
sentation of reality. As such they are better suited for under-
standing the physical processes that have occurred at a site a
posteriori. For HF operators who might be required to manage
induced seismicity in real time at a significant number of ac-
tive well sites, simple models with a relatively small number of
free parameters are required. In this respect, statistical models
become more favorable.

Statistical approaches seek to characterize the observed
seismic event population via a statistical model, usually the
Gutenberg and Richter (1944) (hereafter, G-R) distribution.
Such a model can then be extrapolated to estimate the event
population that is expected to have occurred by the end of the
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injection period. Several such models have been proposed
(e.g., Shapiro et al., 2010; Hallo et al., 2014; McGarr,
2014; van der Elst et al., 2016).

These models are similar in their underlying assump-
tions: event magnitudes can be characterized by the G-R
distribution, and the rate of seismicity is linked in some way
to the injection volume. This relationship is then extrapolated
based on recorded seismicity during the early stages of in-
jection to estimate what the resulting event population would
be once the total volume has been injected. From this
estimated population, the largest event size can be forecasted.
These models have the advantage that they require only a few
parameters, which can be measured as operations progress.
This makes them better suited for the task of providing
a priori mitigation of induced seismicity.

Although these models have been tested at several sites
(e.g., Hallo et al., 2014; Hajati et al., 2015), the crucial aspect
investigated in this article is that we seek to apply these meth-
ods in a prospective manner (e.g., Langenbruch and Zoback,
2016). We do not apply these models using the overall event
population that has been acquired during hydraulic stimula-
tion in a post hoc manner. Instead, we put ourselves into the
shoes of an operator or regulator, where forecasts must be
made using only the data that has been acquired prior to a
given point in time. Evidently, the underlying assumption for
these methods is that the parameters used to characterize
the seismicity as a function of injection volume remain
unchanged during a given operation.

We apply these methods to two datasets collected during
hydraulic stimulation in the Horn River Shale. These multi-
well multistage sites were monitored using downhole micro-
seismic arrays, producing very high-quality datasets. These
datasets are described in the Datasets section, after which we
describe the methods of Shapiro ez al. (2010) and Hallo et al.
(2014) in greater detail and apply them to the datasets.

Datasets

In our case example, we examine microseismic datasets
from two multiwell multistage HF treatments conducted in
the Horn River Shale formation in British Columbia, Canada.
The pads from which the two sets of wells were drilled are
~7 km apart from each other. In the following, we refer to
the two datasets as HR1, which was completed in 2011, and
HR2, which was completed in 2013. These datasets were
provided by the operating company; they are proprietary and
cannot be released to the public.

HR1 Microseismic Data

A total of nine horizontal wells were drilled from the
HR1 pad. A total of 146 stages were stimulated, with
between 15 and 18 stages per well. Microseismic data were
recorded by arrays of up to 100 three-component geophones
placed in boreholes adjacent to those being stimulated (in
both the vertical and horizontal sections of the wells). The
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Figure 1. (a) Map and (b) cross-section views of microseismic events recorded dur-

ing hydraulic fracturing (HF) at HR1. Events are shaded by the number of the stage with
which they are associated. The black lines mark the horizontal wells. The color version

of this figure is available only in the electronic edition.

positions of the geophones were varied as stimulation pro-
gressed along the wells, in at least 21 configurations.

Data were provided from 76 of the stages, consisting of a
total of 140,100 events. These were the stages closest to the
heels of the wells, and therefore closest to the monitoring ar-
rays, where the best-quality microseismic data could be gath-
ered. Events were located by inverting picked P- and S-wave
arrival times through a layered anisotropic velocity model. A
map and cross section of the HR1 microseismic events are
shown in Figure 1. Event magnitudes were calculated by fitting
an idealized source model to the event displacement spectra
to determine the seismic moment (e.g., Stork er al, 2014).
Throughout this article, when referring to magnitude our
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implication is moment magnitude M. In
both cases, this processing of the data was
performed by a service provider, ESG
Solutions.

70

HR2 Microseismic Data

A total of 10 wells were drilled from
the HR2 pad, 237 stages were stimulated,
with between 23 and 24 stages per well.
Microseismic data were recorded by an
array of 96 three-component geophones
placed in three adjacent boreholes. Data
were provided from 119 stages, consisting
of 92,700 events. As with the HR1 pad,

30 data were provided for the stages nearest

to the heels of the wells, where they are in
closest proximity to the monitoring array

20 (and therefore are expected to provide the
| best-quality data). A map and cross section
of the HR2 events are shown in Figure 2.

In both case studies, examination of
event locations reveals evidence for the in-
teraction between HF and faults in the form
of planar features extending downward into
the underlying Keg River limestone forma-
tion. At HR1, the largest event has a mag-
nitude M, 1.3, whereas at HR2 the largest
event has a magnitude M,, 0.5. In both
cases, these magnitudes are larger than
what is typically observed when hydraulic
fractures propagate through shale gas reser-
voirs, where magnitudes are generally less
than O (e.g., Maxwell et al., 2010).

Using Event Population Statistics to
2000 ' Forecast the Largest Event Size

We refer to M,y as the largest mag-
nitude event observed during a particular
stage, and MM,y as the expected largest
magnitude as estimated by a modeling
strategy. Ideally, modeling strategies should
aim to produce conservative estimates of My, such that
M ax < MM, Here, we examine the abilities of two pub-
lished methods, Shapiro et al. (2010) and Hallo et al. (2014),
to forecast MM,y during hydraulic stimulation.

Seismogenic Index (Shapiro et al., 2010)
Shapiro et al. (2010) define the seismogenic index S; as

N,(M)
Vi

SI = loglo( ) + bM7 (1)

in which N,(M) is the number of events that have occurred at
time ¢ that are larger than a given magnitude M, b is the G-R
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Figure 2.  (a) Map and (b) cross-section views of microseismic events recorded dur-

ing HF at HR2. Events are shaded by the number of the stage with which they are as-
sociated. The black lines mark the tracks of the horizontal wells. The color version of

this figure is available only in the electronic edition.

b-value for the observed event magnitude distribution
(EMD), and V, is the cumulative volume injected up until
this time (note that Shapiro et al., 2010, use X to denote
the seismogenic index; we use S; instead to differentiate with
other uses of X elsewhere in this article). Assuming that the
number of events induced per unit volume injected does not
change, then S; will be constant—constant S; has been ob-
served by Dinske and Shapiro (2013) and van der Elst et al.
(2016) for a wide range of cases studies. Shapiro et al. (2010)
show that, in such an instance, if the occurrence of individual
events can be treated as an independent Poisson process, then
the probability that an event larger than M does not occur if a
total volume V7 is injected can be calculated as

P = exp(=Vy x 10572M), )

Rearranging this equation, we arrive at a forecast for the size
of event that will not be exceeded, given a confidence level y:
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—In(»)
MYiax = (SI - log( % ))/b- 3)
T
im0 To provide a mitigation strategy, we are in-

terested in establishing an upper bound for
Myax, that is, to establish what size of
earthquake will not occur (or is unlikely
to occur). Therefore, for the entirety of this
study we consider the upper bound of the
distribution described by Shapiro et al.
(2010), setting y = 0.95.

~80

Seismic Efficiency (Hallo ef al.,
2014)

McGarr (2014) proposed that the cu-
mulative seismic moment released during
injection M, is determined by the total

2 cumulative volume of fluid injected

40

=My = 2uVr, 4

§ in which u is the rock shear modulus.
However, this equation can be considered
as a worst-case scenario, where all the
strain induced by a volume change is re-
leased as seismic energy. In reality, much
of the deformation induced by injection
will be released aseismically. Hallo et al.
(2014) therefore define a seismic efficiency
ratio Sgrr, Which describes the ratio of ob-
served cumulative moment release to the
theoretical maximum given by yVy. Equa-
tion (3) is thereby modified to

2000

EMy = SgreuVr, &)

in which Sggr can be estimated at a given
time from the cumulative moment release
and the cumulative injected volume up until
this time.

For a given cumulative seismic moment release, size of
the largest event will be determined by the b-value. Hallo
et al. (2014) show that M, can be related to the b-value,
the largest event detected MM,y, and the minimum
magnitude of completeness Myy:

bx109x10%!

*M,=
0 1.5-b

(10(MMAX(1‘5—b))_10(Mmm(1-5—b)))’ (6)

in which

a = bMM,« —1og(10%° — 107%9), (7)
and § is the probabilistic half-bin size defined around M}, +,
as described by Hallo ef al. (2014). Based on equation (5),
we can determine the total expected XM, based on the ob-
served seismic efficiency Sggr and the planned total injection
volume V7. Once we have estimated XM, we invert equa-
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Figure 3. Numerical evaluation of the uncertainties inherent
when using equations (6) and (7) to forecast Myax. A modeled
population of events is sampled from a Gutenberg and Richter
(1944) distribution. M is forecast and compared with the largest
event in the simulated population. In (a), we compare the synthetic
and forecast values, whereas in (b) we show a histogram of the
differences between the forecast and modeled values.

tions (6) and (7) to forecast M,y based on the observed
b-values. Essentially, MM,y is a function of the seismic
efficiency, which describes how much seismic moment is
released per unit volume injected, and the b-value, which
describes whether this seismic moment is released as a few
large events or as many small events.

Whereas the Shapiro et al. (2010) S; method provides a
probability distribution for My;,x (equation 3), the Hallo et al.
(2014) method provides a single estimate for MM, based on
the observed (or forecast) b and Sggp values. As such, assum-
ing the Hallo e al. method is a true representation of the in-
duced seismicity, random variability alone would mean that
the actual M$),y value would be larger than the model for
half the cases. As described above, our goal is to establish
conservative MM, values, whereby we have confidence that
no events larger than MM,y will occur. Therefore, we require
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a value based on equations (6) and (7) that also take into
account uncertainties inherent in the approach.

To do this, we consider synthetic, stochastically gener-
ated event populations. By randomly sampling from a G-R
distribution, we generate event populations with a given
b-value and ZM, chosen randomly from 0.8 < b < 3.5 and
9 <loggZM, < 14. We then compare the largest sampled
event (which we refer to as the synthetic M$ ) with the
forecast from the given b and XM, values using equations (6)
and (7) (the forecast M} ). Our results for 1000 such real-
izations are shown in Figure 3. We find that for 98% of
model realizations, the forecast value of MM,y is within 0.5
magnitude units of the synthetic M,y Because we are pri-
marily concerned with setting a conservative envelope that is
not exceeded, in the Results section we take as MM,y the
value computed using the Hallo et al. (2014) method (equa-
tions 6 and 7) +0.5.

There is currently some debate as to whether there really
is a link between injection volume and the rate and/or size of
induced earthquakes (e.g., Atkinson et al., 2016; van der Elst
et al., 2016). This debate stems from fundamental questions
as to the nature of rupture mechanics during induced seismic-
ity. Gischig (2015) describes two end members for rupture
behavior. In the first case, rupture may initiate within the
zone of increased pressure, but uncontrolled rupture can con-
tinue along faults outside of this zone, releasing tectonically
accumulated strain energy. Event size will be therefore
determined by tectonic factors such as fault dimensions
and in situ stress conditions. In the second case, the rupture
is spatially limited to the zone of increased pore pressure, in
which case the injection volume places an a priori determin-
istic limit on the maximum event size.

The second case, where the injection volume places a
deterministic limit on event size, is often characterized by
the McGarr (2014) limit (equation 4). However, observations
of events that appear to breach this limit (e.g., Atkinson et al.,
2016) indicate that, at least in certain cases, the first of the
Gischig (2015) end members applies. Therefore, an a priori
deterministic limit on event size cannot be assumed based on
injection volume.

However, in our approach there is no requirement that
Sgrr < 1, and therefore there is no a priori deterministic limit
to event size. If Sggp > 1, this indicates that the cumulative
moment released is larger than the strain energy introduced
by injection, and therefore the tectonically accumulated
strain energy is also being released. Equation (5) requires
simply that there is proportionality between V7 and XM, in
which Sggpr is to be determined by observation for a given
site. Van der Elst e al. (2016) examined a range of case stud-
ies to investigate whether the number of earthquakes induced
during injection is proportional to injection volume, and
found strong evidence that this was indeed the case, with the
implication that the event nucleation rate is controlled by the
injection volume. If b-values are constant, then this implies
that the cumulative moment release will also be proportional
to injection volume.
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Application to Microseismic Data

To compute b-values, we use the maxi-
mum-likelihood approach described by Aki
(1965). To estimate My, we follow the
method described by Clauset er al. (2009)
to assess the quality of fit between the ob-
served EMD and the G-R relationship using
a Kolmogorov—Smirnov test, choosing as
My the smallest magnitude at which the
null hypothesis (that the observed distribu-
tion can be modeled by the G-R relation-
ship) is not rejected at a 10% significance
level. Fitting a G-R relationship to an ob-
served EMD can be unreliable for low event
numbers. Therefore, we require a minimum
of 50 events with magnitudes larger than
Myn for a reliable measurement. This
means that our approach will only provide
an estimate for M}, once sufficient mi-
croseismic events have occurred.

Figure 4 shows an example of how we
apply these methods to the microseismic
datasets. Plots for every stage are available
in the (B electronic supplement to this
article. We proceed at intervals of 120 s.
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Figure 4. Example demonstrating how we forecast MM,y during an HF stage. In the

lower panel, we update b, Sggg, and S; during injection. Based on these parameters, we
estimate MM, using the methods described by Shapiro et al. (2010) and Hallo er al.
(2014), and compare these to the observed event population. The vertical dashed lines in
the upper panel represent the M}, estimates at the time of the largest event, and 30 and
60 min prior to this event. These data are from stage HR1-A-S10. The color version of
this figure is available only in the electronic edition.

After each interval has elapsed, we recal-

culate the b, Sggg, and §; parameters based on the total vol-
ume injected and the events recorded up until this time. We
then use equations (3), (6), and (7) to estimate, using the Sha-
piro et al. (2010) and Hallo et al. (2014) methods, the ex-
pected value of MM,y given the injection volume that is
planned to take place during the next 120 s interval.

In the lower panel of Figure 4, we plot the measured
values of b, Sgrgr, and S; with time. In the upper panel of
Figure 4, we compare the resulting forecasts of MM,y with
observed event magnitudes. We note that in the example
shown in Figure 4, the forecasted largest event size stabilizes
at a value of approximately MM,y = 0.2 within 40 min of
the start of injection. This is slightly larger than the largest
observed event, which has a magnitude of M%), = 0.0 and
occurs 140 min after the start of injection.

In the Results section, we compare M), with the value
of MM A at the time that the largest event occurred. We also
compare M$ . with MM, . at a time 60 min and then 30 min
before the largest event occurred. We do this to identify the
capacity of such methods to provide an opportunity for
mitigation by giving an operator sufficient warning to alter
(or cease) their stimulation program.

Before considering the results of our method as applied to
all stages of both datasets, we note several features from
Figure 4. First, we note the similarity between the two curves
for S; and log;,(Sgrr). This is to be expected given how the
two parameters are defined. If My is used as the “M” term in
equation (3), then the difference S; —logo(Sgrr) Will be
given by
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Sy —log Sgrr = log(N,(Myin)/ V) + bMyy
—log(EMo/uV,). )]

Rearranging this equation and substituting XM, =
N; < My >, in which < M, > is the mean moment release
per event, we get

Sy —log Sgpr = bMyyy — log(M /). )

In the case studies presented here, My is typically approx-
imately —1.5, b is typically 2, < M, > is typically of
the order 10’ N-m (equivalent to a magnitude of approxi-
mately —1) and we approximate the shear modulus as
u = 20 x 10° Pa. Hence the similarity in values between S;
and log;((Sgrr). We also note that the values of MM,y com-
puted by the two methods are similar. This gives us confidence
that both independent methods provide similar results.

Results

Before showing the results using the two methods de-
scribed above, in Figure 5 we compare the observed values
for M, for each stage with the values of MM, forecast
using the McGarr (2014) equation MMy = uV7. We do this
primarily to demonstrate that there does not appear to be any
correlation between the observed M,y of each stage and
the volume injected at the time of occurrence of each event.
We also note that the observed magnitudes are far smaller
than those estimated by the McGarr (2014) equation.
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stage of both datasets, and that estimated using the McGarr
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jected volume. Symbols are shaded by log;(N), in which N is the
total number of events per stage. The dashed line indicates a 1:1
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In Figure 6, we compare the observed and forecast
Myax values using the Hallo ef al. (2014) method. As per
Figure 4, we compare the forecasted MM . values at the time
that the largest event occurred, but also compare the fore-
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casted MM,y values 30 and 60 min before the occurrence
of the largest event. In Figure 7, we do the same for the
Shapiro et al. (2010) method.

We note several features from these results. First, as
required, in general, M,y = M{y,x for almost every stage.
Not only this, but stages that produced smaller events have
smaller values of MM,y, i.., there is clear correlation
between MM, and M) . This is encouraging, as it implies
that these methods do have some forecasting power, unlike
the results provided by the McGarr (2014) approach shown
in Figure 5. This correlation is present even for the
T — 60 min measurements, implying that these methods are
capable of identifying stages that may induce larger events a
significant period of time before such events occur.

There is only one stage, at HR2, where both the Shapiro
et al. (2010) and Hallo et al. (2014) methods significantly
underestimate M. We note that this stage had only 131
events in total, making it one of the smallest stages in terms
of the number of events. The robustness of statistical tech-
niques such as these will be dependent on the number of
events sampled, so it is perhaps unsurprising that stages with
fewer events might produce less reliable results.

Discussion

Do Seismicity Parameters Vary during Injection
Stages?

The models we use to forecast MM,y are entirely
statistical and do not incorporate any geological information.
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Figure 6. Comparison between the observed My ,x for every stage of both datasets, and that estimated using the Hallo et al. (2014)

approach. The upper panels show crossplots of observed and modeled MM, values, whereas the lower panels show histograms of
MM, — M, For each case, we show the values of MM, at the time that the largest event occurred, and at 30 and 60 min prior to
this time. The symbols are shaded by log;,(XN), in which N is the total number of events per stage. The dashed lines in the upper panels
represent M. = MM .. Note that for a handful of stages, robust estimates are only obtained within 30 or 60 min of the largest event. In
such cases, no MM, value is returned at the 7 — 30 or T — 60 cases, and so there are slightly fewer points plotted for these cases.
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Figure 7.
approach. This figure follows the same format as Figure 6.

The major advantage of these statistical approaches is that
they are relatively simple to use (requiring only that the
volume injected, and the number and magnitude of seismic
events, can be measured). The principal assumption that
underpins this type of approach is that both b, Sggr,
and/or §; will remain consistent throughout the injection
period. It is by no means clear that this will always be the case.

These parameters might be affected by a range of fac-
tors; including, the in situ stress conditions, the lithology of
the rock through which hydraulic fractures are propagating,
and the presence of pre-existing fracture networks and/or
faults. Generally speaking, the volume of rock influenced
by injection increases as the pressure front moves out from
the injection well. Therefore, the pressure pulse induced by
injection may begin to act on different layers and/or struc-
tures as injection continues. It is easy to imagine scenarios
where a growing hydraulic fracture intersects with a pre-
existing fault, or propagates into an underlying or overlying
layer that is more seismogenic, resulting in a change in the
rate of seismicity and/or b-value.

The key question then becomes whether such changes are
rapid, or whether there will be a more gradual evolution. If the
seismicity changes suddenly, then larger events may occur that
cannot be anticipated based on the preceding microseismicity.
It would therefore be very difficult for an operator to mitigate
induced seismicity, as larger events would occur “out of the
blue.” In contrast, if such changes occur relatively gradually
then an operator may be able to identify an increase in the
seismicity rate, or a decrease in the G-R b-value, that would
indicate an increasing probability of the occurrence of a larger
event. If closely monitored, this might allow an operator to
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take appropriate mitigating action (reducing pumping rates
and/or pressures, or indeed ceasing to pump altogether).

Incidentally, this assumption is also implicit in existing
schemes that are used to mitigate induced seismicity such as
TLSs, although this assumption is rarely stated explicitly. If
large events are triggered immediately when an HF intersects
a fault, then TLSs will be ineffective, because an event that is
much larger than the red-light threshold could occur without
any prior TLS-based mitigation actions having been taken. In
contrast, if there is a more gradual buildup of seismicity upon
intersection between a hydraulic fracture and a fault, then the
amber and red lights will progressively be triggered, and the
appropriate mitigation steps taken.

We note that both Dinske and Shapiro (2013) and van
der Elst et al. (2016) observed remarkably constant values of
S; during fluid injection, across a wide variety of settings
including HF, stimulation of geothermal reservoirs, and
during wastewater disposal. There are also sound physical
reasons to expect a gradual increase in seismic magnitudes
as a hydraulic fracture impinges on a fault, as opposed to a
sudden jump. When a fracture first meets a fault, both the
area of the fault is affected and the volume of fluid injected
into the fault will be small. As such, we might expect the
initial events to be smaller. As injection continues, the area
of the fault affected will increase, as will the volume of fluid
injected into it, which would be expected to increase the
event magnitudes as injection continues.

This assumption is borne out in the results we present
here, most notably in the fact that the forecast M, values
tend to anticipate the observed largest events by at least
60 min (Figs. 6 and 7). It is also apparent when the evolution
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of these parameters is examined in detail during each stimu-
lation stage (see () electronic supplement). The implication
is that large induced events do not occur “out of the blue,” but
are accompanied by a buildup in seismicity as the stimulation
impinges on a pre-existing fault.

Strategy for Mitigation of Induced Seismicity

Based on the above results, we suggest the following
strategy for the mitigation of induced seismicity. Prior to
the start of operations, an acceptable threshold for M, is
set, based on the vulnerability of nearby populations, build-
ings and infrastructure to seismic activity, and the expected
ground motion that would be caused by events of a
given size.

In this case, we arbitrarily set our thresholds as
MM, > 1. Given the relative lack of buildings, local pop-
ulations, or infrastructure near to this site, this is a relatively
conservative threshold, but nevertheless affords a clear dem-
onstration of the approach. Because the results for the Hallo
et al. (2014) method show a tighter correlation between
MM, and M,y (compare to Figs. 6 and 7), we use this
approach as our preferred method to compute MM, . If
MM, exceeds this threshold during a stage, then mitigating
actions should be taken. In this case, we suggest that the mit-
igating action would be to cease injection and move on to the
next stage.

Based on our results, we divide the stages into three cat-
egories: stages where the MM, > 1 threshold is never
reached and therefore no mitigation action is indicated
(Fig. 8a,b); stages where the MM,y > 1 threshold is reached
only after the occurrence of the largest observed event
(Fig. 8c,d); and stages where the MM,y > 1 threshold is
reached before the occurrence of the largest event (Fig. 8e,f).

The first category of stages, where the MMy > 1 thresh-
old was not exceeded at any time, is represented in Figure 8a.
An example of such a stage is shown in Figure 8b; 159 out of
195 total stages (82%) fall into this category. The circles in
Figure 8a show the largest event to occur in each of these
stages; the largest event to occur in a stage where the
MM, > 1 threshold was not reached had a magni-
tude M, 0.4.

The second category of stages is where the MM,y > 1
threshold was exceeded but only after the occurrence of the
largest event (Fig. 8c). An example of such a stage is shown
in Figure 8d: in this stage the largest event, which has a mag-
nitude of M ,x = 0.58, occurs after ~1 hr. The MM, > 1
threshold is reached after 2 hrs of injection. Because the
threshold is reached after the occurrence of the largest event,
any mitigation steps that might have been taken would not
affect the size of the largest event to occur during these
stages. A total of 16 stages (8%) fall into this category,
and M, for each of these stages is depicted in Figure 8c.
The largest magnitude event to occur during these stages had
a magnitude M, 0.88.
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The third category of stages is where the MM,y > 1
threshold was exceeded prior to the occurrence of the largest
event. An example of such a stage is shown in Figure 8f: in
this stage, the MM,y > 1 threshold is reached after ~1 hr of
injection. This is over 2.5 hrs before the occurrence of the
largest event, which had a magnitude of M, = 1.24. In
other words, the potential for an M, > 1 event is identifiable
at a relatively early point during the stage, and it is therefore
possible that actions could have been taken that might have
mitigated the occurrence of this event. A total of 20 stages
(10%) fall into this third category, where the MM,y > 1
threshold was reached prior to the occurrence of the largest
event. These stages are depicted in Figure 8e, in which the
squares indicate the size of the largest event to occur prior to
reaching the MM,y > 1 threshold, whereas triangles indicate
the eventual largest event to occur. Within this category of
stages, three had events with magnitudes larger than
M, 1. However, the largest event to occur before reaching
the MM,y > 1 threshold had a magnitude M,, 0.65.

Overall, we note that for all the stages where the largest
event was smaller than MY, <0, no mitigation actions
were indicated. For some stages 0 < M,, < 1 mitigation
actions were indicated, whereas in others they were not.
For all the stages where the largest event exceeded
M Ax > 1, mitigation actions were always indicated prior
to the occurrence of these events. The result is that for
our mitigated population there are no stages where the largest
event exceeds M,, > 1.

Mitigating Actions and Postinjection Seismicity

The major caveat that applied to the results described
above is the assumption that ceasing injection can prevent
the subsequent larger events from happening. In reality, in-
jection was not stopped, and so we cannot know whether
cessation of injection during a stage would actually have mi-
tigated the larger events that occurred later in the stage. In
other cases of induced seismicity, events have continued with
increasing magnitudes even after injection had ceased (e.g.,
Hiring et al., 2008). It is certainly possible that this would
have been the case at this site. Therefore, it is not possible to
definitively conclude that, even if mitigation steps had been
taken, further seismicity would not have occurred. Never-
theless, we believe that it is important that operators develop
scientific criteria to guide operational decisions with respect
to mitigating induced seismicity, and that the results pre-
sented here clearly indicate that the methods described in this
article do provide such a basis.

Conclusions

We have presented case studies from two sites where mi-
croseismic monitoring has imaged pre-existing faults being
activated during HF. We investigate the use of two statistical
methods found in the literature (Shapiro et al., 2010; Hallo
et al., 2014) to forecast the largest event size that might be
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expected during an HF stage. The basis of these two methods
is to characterize the rate of seismicity with respect to the in-
jection volume, and thereby extrapolate to an expected event
distribution once the planned total volume has been injected.

Rather than examining these case studies post hoc, we
explore the potential of these methods to work in a prospec-
tive manner: at each given timestep, we only make use of
information that is available prior to this time. We do this to
put ourselves in the shoes of an operator or regulator, where
decisions must be taken in real time as injection proceeds.
We find that the proposed methods can forecast the largest
event magnitudes with a reasonable degree of accuracy. This
enables us to propose a strategy to mitigate HF-IS, whereby
alterations to the injection strategy should be made if MM,
exceeds a given threshold. We show that this strategy may
have been able to mitigate the larger events that occurred
at our case study sites.

The underlying assumption for these methods is that the
rate of seismicity with respect to the injection volume will
not alter during injection, or that if a fault is encountered, it
will evolve gradually, allowing mitigation actions to be taken
if real-time monitoring is used. We find that this assumption
appears to hold for the datasets considered here. However,
further study is required to examine whether this is the case
more generally. This highlights the need for good-quality
seismic monitoring if the science around injection-induced
seismicity is to advance. In many of the most well-known
case examples, local monitoring arrays were only installed
after the largest events had occurred. It is therefore difficult
to determine with any certainty what happened in the time
leading up to the triggering, and whether an operator could
have made observations that in turn might have allowed them
to take mitigating actions.

The most effective types of monitoring systems are either
downhole arrays (e.g., Maxwell et al., 2010), as per both case
studies in this article, or very large very dense surface arrays,
over which data are migrated and stacked (e.g., Chambers
et al., 2010). Unfortunately, the costs of these types of deploy-
ment are high, and it is unlikely that such systems will be de-
ployed at every injection project. However, novel processing
methods using smaller arrays of seismometers placed at the
surface (e.g., Skoumal er al, 2015; Verdon et al., 2017)
are used to improve the quality of datasets available.

Injection-induced seismicity is a growing concern for
various industries, and regulators are increasingly requiring
operators to deploy monitoring arrays, usually to meet a TLS
requirement of some form. We anticipate that, as more case
studies become available, our understanding of injection-
induced seismicity will grow, and our ability to mitigate such
events will thereby improve.

Data and Resources

The datasets presented in this article were acquired by
the operating company and are proprietary. Therefore, they
cannot be released to the public.

Downloaded from https://pubs.geoscienceworld.org/ssa/bssalarticle-pdf/108/2/690/4109787/bssa-2017207.1.pdf
bv lIniversitv of Bristol JamesVerdon

J. P. Verdon and J. Budge

Acknowledgments

The authors would like to thank the operator of the Horn River sites for
allowing us to access the data, and to acknowledge ESG Solutions Ltd., the
microseismic service provider who processed the dataset. The authors would
also like to thank the sponsors of the Bristol University Microseismicity
Project (BUMPS), under whose auspices this work was performed.

References

Aki, K. (1965). Maximum likelihood estimate of b in the formula log N =
a — bM and its confidence limits, Bull. Earthq. Res. Inst. 43,237-239.

Atkinson, G. M., D. W. Eaton, H. Ghofrani, D. Walker, B. Cheadle, R.
Schultz, R. Shcherbakov, K. Tiampo, J. Gu, R. M. Harrington, et al.
(2016). Hydraulic fracturing and seismicity in the western Canada
Sedimentary basin, Seismol. Res. Lett. 87, 1-17.

Bao, X., and D. W. Eaton (2016). Fault activation by hydraulic fracturing in
western Canada, Science doi: 10.1126/science.aag2583 (in press).

B.C. Oil and Gas Commission (2012). Investigation of Observed Seismicity
in the Horn River Basin, available at http://www.bcogc.ca/node/8046/
(last accessed July 2015).

B.C. Oil and Gas Commission (2014). Investigation of Observed Seismicity
in the Montney Trend, available at https://www.bcogc.ca/node/12291/
(last accessed July 2015).

Chambers, K., J.-M. Kendall, S. Brandsberg-Dahl, and J. Rueda (2010).
Testing the ability of surface arrays to monitor microseismic activity,
Geophys. Prospect. 58, 821-830.

Clarke, H., L. Eisner, P. Styles, and P. Turner (2014). Felt seismicity
associated with shale gas hydraulic fracturing: The first documented
example in Europe, Geophys. Res. Lett. 41, 8308-8314.

Clauset, A., C. R. Shalizi, and M. E. J. Newman (2009). Power-law
distributions in empirical data, SIAM Rev. 51, 661-703.

Darold, A., A. A. Holland, C. Chen, and A. Youngblood (2014). Preliminary
analysis of seismicity near Eagleton 1-29, Carter County, July 2014,
Oklahoma Geol. Soc. Open-File Rept. OF2-2014.

Dinske, C., and S. A. Shapiro (2013). Seismotectonic state of reservoirs
inferred from magnitude distributions of fluid-induced seismicity, J.
Seismol. 17, 13-25.

Friberg, P. A., G. M. Besana-Ostman, and L. Dricker (2014). Characterisation
of an earthquake sequence triggered by hydraulic fracturing in
Harrison County, Ohio, Seismol. Res. Lett. 85, 1295-1307.

Gischig, V. S. (2015). Rupture propagation behavior and the largest possible
earthquake induced by fluid injection into deep reservoirs, Geophys.
Res. Lett. 42, 7420-7428.

Gupta, H. K. (1985). The present status of reservoir induced seismicity
investigations with special emphasis on Koyna earthquakes,
Tectonophysics 118, 257-279.

Gutenberg, B., and C. F. Richter (1944). Frequency of earthquakes in
California, Bull. Seismol. Soc. Am. 34, 185-188.

Hajati, T., C. Langenbruch, and S. A. Shapiro (2015). A statistical model for
seismic hazard assessment of hydraulic-fracturing-induced seismicity,
Geophys. Res. Lett. 42, 10,601-10,606.

Hakimhashemi, A. H., M. Schoenball, O. Heidbach, A. Zang, and
G. Griinthal (2014). Forward modelling of seismicity rate changes
in georeservoirs with a hybrid geomechanical-statistical prototype
model, Geothermics 52, 185-194.

Hallo, M., I. Oprsal, L. Eisner, and M. Y. Ali (2014). Prediction of magnitude
of the largest potentially induced seismic event, J. Seismol. 18,421-431.

Hiring, M. O., U. Schanz, F. Ladner, and B. C. Dyer (2008). Characterisation
of the Basel 1 enhanced geothermal system, Geothermics 37, 469-495.

Keranen, K. M., H. M. Savage, G. A. Abers, and E. S. Cochran (2013).
Potentially induced earthquakes in Oklahoma, USA: Links between
wastewater injection and the 2011 M, 5.7 earthquake sequence,
Geology 41, 699-702.

Langenbruch, C., and M. D. Zoback (2016). How will induced seismicity in
Oklahoma respond to decreased saltwater injection rates? Sci. Adv. 2,
e1601542, doi: 10.1126/sciadv.1601542.


http://dx.doi.org/10.1126/science.aag2583
http://www.bcogc.ca/node/8046/
http://www.bcogc.ca/node/8046/
http://www.bcogc.ca/node/8046/
https://www.bcogc.ca/node/12291/
https://www.bcogc.ca/node/12291/
https://www.bcogc.ca/node/12291/
http://dx.doi.org/10.1126/sciadv.1601542

Examining the Capability of Statistical Models to Mitigate Induced Seismicity 701

Li, T., M. E. Cai, and M. Cai (2007). A review of mining-induced seismicity
in China, Int. J. Rock Mech. Min. Sci. 44, 1149-1171.

Maxwell, S. C., J. Rutledge, R. Jones, and M. Fehler (2010). Petroleum
reservoir characterization using downhole microseismic monitoring,
Geophysics 75, A129-A137.

Maxwell, S. C., F. Zhang, and B. Damjanac (2015). Geomechanical model-
ing of induced seismicity resulting from hydraulic fracturing, The
Leading Edge 34, 678-683.

McGarr, A. (2014). Maximum magnitude earthquakes induced by fluid
injection, J. Geophys. Res. 119, 1008-1019.

Raleigh, C. B., J. H. Healy, and J. D. Bredehoeft (1976). An experi-
ment in earthquake control at Rangely, Colorado, Science 191,
1230-1237.

Schultz, R., S. Mei, D. Pana, V. Stern, Y. J. Gu, A. Kim, and D. Eaton
(2015). The Cardston earthquake swarm and hydraulic fracturing of
the Exshaw Formation (Alberta Bakken play), Bull. Seismol. Soc.
Am. 105, 2871-2884.

Schultz, R., V. Stern, M. Novakovic, G. Atkinson, and Y. J. Gu (2015).
Hydraulic fracturing and the Crooked Lake sequences: Insights
gleaned from regional seismic networks, Geophys. Res. Lett. 42,
2750-2758.

Segall, P. (1989). Earthquakes triggered by fluid extraction, Geology 17,
942-946.

Shapiro, S. A., C. Dinske, and C. Langenbruch (2010). Seismogenic index
and magnitude probability of earthquakes induced during reservoir
fluid stimulations, The Leading Edge 29, 304-309.

Skoumal, R. J., M. R. Brudzinski, and B. S. Currie (2015). Induced earth-
quakes during hydraulic fracturing in Poland Township, Ohio, Bull.
Seismol. Soc. Am. 105, 189-197.

Stork, A. L., J. P. Verdon, and J.-M. Kendall (2014). Assessing the effect of
microseismic processing methods on seismic moment and magnitude
calculations, Geophys. Prospect. 62, 862-878.

Stork, A. L., J. P. Verdon, and J.-M. Kendall (2015). The microseismic re-
sponse at the In Salah carbon capture and storage (CCS) site, Int. J.
Greenh. Gas Control 32, 159-171.

Downloaded from https://pubs.geoscienceworld.org/ssa/bssalarticle-pdf/108/2/690/4109787/bssa-2017207.1.pdf
bv lIniversitv of Bristol JamesVerdon

van der Elst, N. J., M. T. Page, D. A. Weiser, T. H. W. Goebel, and S. M.
Hosseini (2016). Induced earthquake magnitudes are as large as
(statistically) expected, J. Geophys. Res. 121, 4575-4590.

Verdon, J. P., J.-M. Kendall, S. P. Hicks, and P. Hill (2017). Using beam-
forming to maximise the detection capability of broadband seismom-
eter arrays deployed to monitor oilfield activities, Geophys. Prospect.
65, 1582-1596.

Verdon, J. P, A. L. Stork, R. C. Bissell, C. E. Bond, and M. J. Werner (2015).
Simulation of seismic events induced by CO, injection at In Salah,
Algeria, Earth Planet. Sci. Lett. 426, 118-129.

Wang, R., Y. J. Gu, R. Schultz, A. Kim, and G. Atkinson (2016). Source
analysis of a potential hydraulic-fracturing-induced earthquake near
Fox Creek, Alberta, Geophys. Res. Lett. 43, 564-573.

Yoon, J. S., A. Zang, and O. Stephansson (2014). Numerical investigation on
optimized stimulation of intact and naturally fractured deep geothermal
reservoirs using hydro-mechanical coupled discrete particles joints
model, Geothermics 52, 165-184.

School of Earth Sciences
University of Bristol
Wills Memorial Building, Queen’s Road
Bristol BS8 1RJ, United Kingdom
James. Verdon @bristol.ac.uk

J.PV)

Nexen Energy ULC

801 7th Avenue SW

Calgary, Alberta

Canada T2P 3P7
J.B.)

Manuscript received 24 July 2017,
Published Online 27 February 2018



