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Seismic forwardmodeling is an integral component ofmicroseismic location algorithms, yet there is generally no
one correct approach, but rather a range of acceptable approaches that can be used. Since seismic signals are band
limited, the length scale of heterogeneities can significantly influence the seismic wavefronts and waveforms.
This can be especially important for borehole microseismic monitoring, where subsurface heterogeneity can be
strong and/or vary on length scales equivalent to or less than the dominant source wavelength. In this paper,
we show that ray-based approaches are not ubiquitously suitable for all borehole microseismic applications.
For unconventional reservoir settings, ray-based algorithmsmay not be suitably accurate for advancedmicroseis-
mic imaging. Herewe focus on exploring the feasibility of using one-waywave equations as forward propagators
for full waveform event location techniques. As a feasibility study, we implement an acoustic wide-angle wave
equation and use a velocity model interpolation approach to explore the computational efficiency and accuracy
of the solution.We compare the results with an exact solution to evaluate travel-time and amplitude errors. The
results show that accurate travel-times can be predicted to within 2 ms of the true solution for modest velocity
model interpolation. However, for accurate amplitude prediction or for higher dominant source frequencies, a
larger number of velocity model interpolations is required.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

Microseismic monitoring is being applied increasingly in the hydro-
carbon industry and this is because it provides a means of remotely
monitoring the state of stress (i.e. failure) within the subsurface. Micro-
seismic technology enables monitoring hydraulic fracture programs in
unconventional reservoirs, assessment of fault reactivation and hydro-
carbon leakage in conventional reservoirs, as well as characterization
of the subsurface rock mass (e.g., frequency dependent seismic anisot-
ropy). Although there has been significant development of advanced
microseismic attributes (commonly referred to as ‘beyond the dots in
the box’ by Eisner et al., 2010a), the location of microseismic events
(the ‘dots’) represents the most fundamental measurement in micro-
seismic monitoring (e.g., Eisner et al., 2010b).

Ray based solutions, such as eikonal solvers, are very attractive since
they provide computationally fast solutions. If first-order effects of
material averaging (or wavefront smoothing) can be modeled by a
gradually varying medium and the wave path lengths are not too
great, then basic ray methods should be applicable (e.g., Cerveny,
2001). However, ray based approaches are approximate solutions and
do not accuratelymodelwave phenomenawhen velocity heterogeneity
varies on length scales on the order of or less than the dominant seismic
wavelength (e.g., Angus, 2014; Cerveny, 2001). For instance, if strong
multiple scattering or wide-angle diffraction is important, where seis-
mic energy is scattered away from the direct ray path yet in the forward
direction within the Fresnel zone, a numerical solution of the full wave
equation is necessary (e.g., Carcione et al., 2002; Thomson, 1999). Full
waveform approaches, such as finite-difference solvers, yield substan-
tiallymore accurate solutions, but at the expense of slower computation
times (e.g., Thomson, 1999). These full waveform solutions will yield
very accurate solutions but, more often than not, may not be practical
for microseismic processing. Thus, selecting an appropriate method
involves weighing the advantages and disadvantages of all acceptable
approaches in terms of accuracy requirements and computational
limitations.

Usher et al. (2013) showed that microseismic waveforms are sensi-
tive to velocitymodel andmicroseismic source frequency (this is funda-
mental to the physics wave propagation of bandlimited signals,
i.e., frequency dependence of wave propagation). This dependence on
velocitymodel and source frequency aswell as unavoidable uncertainty
in true velocity model will impact on the accuracy of microseismic
event locations and hence reliability of any geometrical interpretation
(Thornton, 2013). For instance, Thornton (2013) comparedmicroseismic
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travel-time predictions between an acoustic eikonal solver and a finite-
difference solver, and observed noticeable mismatch between the two
solutions. The results from Thornton (2013) are consistent with Usher
et al. (2013) in that wave propagation is sensitive to velocity model
heterogeneity, and that certain ray based approaches, being limited to
smoothly varying velocity models, may not be universally suitable in
all unconventional hydrocarbon settings. Ray based approaches neglect
frequency-dependent effects and non-geometrical arrivals (e.g., head
waves), and are generally only suitable for smooth velocity models
(i.e., when heterogeneity length scales are greater than the dominant
seismic wavelength).

In this paper, we explore the feasibility of using thewide-angle one-
way wave equation as a forward propagator (i.e., Green's function) for
microseismic event location. The wide-angle one-way wave equation
is capable of modeling the waveform evolution along the underlying
wavefront, where frequency dependent effects and non-geometrical ar-
rivals can be predicted. We focus on borehole microseismic monitoring
geometry, wherewave propagation is predominantly sub-horizontal. In
such circumstances, the influence of non-geometrical arrives due to
horizontal layering as well as other wave phenomena due to velocity
heterogeneity on lengths scales on the order of or less than the domi-
nant seismic wavelength will be significant. For surface microseismic
monitoring, the influence of vertical velocity variation is less problemat-
ic and so ray-based methods should be appropriate.

2. Theory

2.1. The influence of Green's function on event location error

To highlight the impact of velocity model and bandlimited wave
propagation on microseismic waveforms and hence on event location
uncertainty, we evaluate the influence of velocity model heterogeneity
on event location using a ray-based location algorithm. Specifically,
we use an eikonal solver to generate a look-up table for P- and S-wave
travel-times through three depth-dependent 2D velocitymodels, there-
by providing more realistic estimates of location error. A total of nine
synthetic datasets are generated (Usher et al., 2013) by varying the
velocity model and event dominant source frequency: three velocity
models (3 layer surface seismic, 13 layer VSP and 34 layer sonic velocity
models) and three geometrically equivalent microseismic events but
with different dominant source frequencies (40 Hz, 150 Hz and
300Hz). To generate the full waveform synthetics, we use the full wave-
form E3D code (Larsen and Harris, 1993). E3D is a staggered grid,
fourth-order accurate in space and second-order accurate in time
finite-difference algorithm (e.g., Virieux, 1984, 1986) for isotropic
two-dimensional (2D) and three-dimensional (3D) viscoelastic media.
The specific eikonal solver used was developed as part of the
Madagascar package (Sethian, 1996; Sethian and Popovici, 1999). The
eikonal solver is used to generate a look-up table of travel-times from
each point in a discretized velocitymodel to each receiver. The optimum
event location and uncertainty are evaluated using the neighborhood
algorithm of Sambridge (1999a,b). The root-mean-square misfit
between observed travel-time from the full waveform synthetic
seismograms and the predicted travel-time from the ray-base eikonal
solver is the objective function that is minimized. Since the eikonal
solver produces travel-times for discrete points in the subsurface and
the neighborhood algorithmrequires the computation of a continuously
varying hyper-surface, we use the interpolation algorithm of (Akima,
1978) to compute travel-times for points between the discretized grid
of the eikonal solver.

In Fig. 1, we compare the influence of velocity model on event loca-
tion for a microseismic source with dominant frequency 300 Hz (the
results for lower dominant frequencies are similar). In this comparison,
finite-difference synthetic microseismic waveforms are generated for
three velocity models (3 layer surface seismic model, VSP and sonic
log). The travel-times of the P- and S-waves are picked manually for
each waveform data set. Locations for each of these sets of picks were
computed using an eikonal solver using each of the three velocity
models, giving a total of 9 permutations (3 velocity models used to
generate synthetic data and 3 velocitymodels used in the event location
algorithm). The resulting event locations are listed in Table 1.

First we consider the cases where the velocity model used to gener-
ate the synthetic data and the velocity model used to locate the events
are identical (light blue, medium gray and dark red dots in Fig. 1).
These results indicate the accuracy of the location algorithm, as any
mislocation will come either from errors in picking, or from limitations
in the use of eikonal solvers to compute travel-times: for instance,
eikonal solvers compute the first arrival travel-time, regardless of
whether this arrival is the most energetic arrival. For this case the
locations are to within ±5 m in depth. The horizontal distances range
between 10 m and 40 m away from the modeled source location and
this is due to the effects of array geometry; we use a single vertical bore-
hole in this case. Using oneormore additional boreholeswould improve
the horizontal location misfit (e.g., Jones et al., 2014). Note that for the
sonic log model (dark red dot in Fig. 1), the confidence ellipse is larger
indicating that the eikonal solver is yielding less accurate results as
expected given that the model heterogeneity is beyond the ray theory
high-frequency assumption. Next, we consider the cases where one
velocity model has been used to generate the full waveform synthetic
data, but the locations are computed using a different, and therefore
incorrect, velocity model. The estimated source depths range between
5 m and 30 m of the true source depth, whereas the estimated source
lateral locations range between 10 is 90 m from the true source lateral
location. This suggests there is an error due to using different velocity
models on the order of 10 m. We should note that this error is very
optimistic (i.e., best case scenario) and we would expect error in real
data to be larger, and this is because the synthetic waveforms are
clean from typical microseismic noise.

2.2. Beyond ray-based algorithms—wide-angle one-way wave equation

Ray based forward modeling algorithms are extremely pervasive
throughout the hydrocarbon industry because they provide very
efficient travel-time predictions for a range of problems, such as velocity
model building (e.g., Jones, 2010) and event locations (e.g., Maxwell,
2014). However, ray theory is a high-frequency approximate solution
to the wave equation (Cerveny, 2001) and care must be taken when
applying ray-based approaches to unconventional environments.
Implicit in ray theory is the assumption that the velocity model hetero-
geneity is smoothly varyingwith respect to the length scales of the seis-
mic wave. For microseismic events, assuming dominant frequencies
ranging between tens of Hz up to hundreds of Hz (e.g., Gibowicz and
Kijko, 1994; Maxwell, 2014; Rentsch et al., 2007; Teanby et al., 2004;
Trifu et al., 2000), the wavelength of microseismic waves can range on
the order of 100 s of meters for low frequency events down to 10 s of
meters or less for higher frequency sources. For moderate to high
frequency events (e.g., between 100 and 500 Hz signals), vertical veloc-
ity heterogeneity can be significant enough such that the ray theory
assumption of smoothly varying velocity breaks-down (Thornton,
2013). This is especially problematic for borehole arrays since the veloc-
ity heterogeneity varies across the sub-horizontally propagating
wavefront (Fig. 1). However, vertical heterogeneity also impacts surface
array imaging, such as degrading imaging aperture (e.g., Price, 2013).

The one-way wave equation (sometimes referred to as parabolic
wave equation) has been used extensively in the hydrocarbon industry
primarily as a forward propagator in seismic reflection migration
(e.g., Claerbout, 1970) but more recently in many other applications,
such as modeling shear-wave splitting as well as frequency dependent
anisotropy (see Angus, 2014). The one-way wave equation is computa-
tionally more efficient than full waveform solutions (e.g., finite-
difference method) and this is because it reduces the second-order
partial differential wave equation into two first-order equations



Fig. 1. Comparison of event locations using the eikonal solver with respective 90% confidence ellipses for a source with dominant source frequency of 300 Hz. The true source location is
indicated by the green star. The blue values represent resultswhere the syntheticwaveformswere generated using the 3-layer velocitymodel, the gray/black using theVSP velocitymodel
and the red using the sonic velocity model. The finite-difference algorithm E3D is used to generate the synthetic microseismic data and the travel times from the full-waveform finite -
difference seismograms are picked manually. The eikonal solver uses the finite-difference full-waveform travel time picks to predict the event location.
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(e.g., Angus, 2014; Fishmann and McCoy, 1984; Thomson, 1999). This
reduction to first-order with respect to a preferred axis limits one-way
wave equations to transmission problems, since backscatter is neglected,
but allows a decrease in several orders of magnitude in computational
effort (see Angus, 2014 for review of one-way wave equations). In this
paper, we focus on the wide-angle one-way wave equation for 3-D
acoustic media derived by Thomson (2005). The wide-angle acoustic
equation is written as

φ x1 þ ε; xα ; pα ;ωð Þ ¼ e−iωP1ε½ � 1þ Qεð Þφ x1; xα ;pα ;ωð Þ: ð1Þ

whereϕ is the acoustic wavefield, ε is the incremental extrapolation step
length in the x1 direction, xα are the lateral coordinates (i.e.,α= 2,3),ω
is frequency and p is slowness. The phase propagator coefficient P1 is de-
fined as

P1 x1; xα ; pαð Þ ¼ 1
V x1; xαð Þ2 − pαð Þ2

� �1=2
; ð2Þ
Table 1
Event locations as computed using the eikonal solver. The 3 synthetic datasets were
generated using the 3 velocity models. Travel-time picks for each dataset were then used
to locate the event using the various velocity models (yielding 9 permutations). The
relative location of the event is 330 m horizontally (lateral distance from the well) and
750 m in depth.

Velocity model for
synthetics

Velocity model for location algorithm

Sonic VSP 3 layer

Lateral
(m)

Depth
(m)

Lateral
(m)

Depth
(m)

Lateral
(m)

Depth
(m)

Sonic 355 746 352 757 415 768
VSP 340 736 338 750 413 756
3 layer 327 725 327 733 373 750
where v(x1,xα) is the 3D variable acoustic velocity. The transmission
coefficient Q is the energy flux term

Q x1; xα ; pαð Þ ¼ −∂1P1

2P1
; ð3Þ

that enables correctly modeling the true amplitude in the presence of
strong velocity gradients.

Although Eq. (1) can be considered computationally efficient when
compared to more complete full-waveform methods, such as finite-
difference methods, it is still computationally cumbersome, especially
for 3D media. One of the significant computational costs of this algo-
rithm stems from the shuttling between the space and wave number
domains (see Thomson, 2005); for many algorithms, this shuttling is
done via very efficient fast Fourier transforms (FFTs). Improvements
can be made by implementing theoretical approximations (Ferguson
and Margrave, 2005) or by manipulating model parameterization
(Gazdag and Sguazzero, 1984; Thomson, 2005).

Tomake the implementation of Eq. (1) computationally efficient, we
make use of the velocity model interpolation concept introduced by
Gazdag and Sguazzero (1984). Specifically, rather than having to com-
pute an FFT at each grid point within the computational domain for
each extrapolation step, an FFT is performed for an integer number of
velocities. For each grid point, the wavefield is computed by linearly
interpolating the wavefields from the nearest velocity values greater
than and less than the individual grid velocity value. To do this, we
introduce an automated linear interpolation scheme (Angus, 2014). In
this approach, at each x1 þ ε =2 plane the acoustic velocity model is
discretized into i = (1, N) velocities

Vmin x1 þ ε=2; xαð Þ≤Vi≤Vmax x1 þ ε=2; xαð Þ; ð4Þ

where Vmin and Vmax are the minimum and maximum acoustic veloci-
ties within the chosen velocity model, respectively. Next, the propaga-
tor P1 and transmission coefficient Q are evaluated for each discrete
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velocity Vi. Then N acoustic wavefields ϕi(x1 + ε; ω) are evaluated for
each discrete velocity Vi using the wide-angle Eq. (1). Finally, for each
lateral xα grid point, the complete wavefield ϕi(x1 + ε; xα, pα; ω) is
synthesized using the linear velocity wavefield interpolation (LVWI)
scheme

φ x1 þ ε; xα ; pα ;ωð Þ ¼ ηαφi x1 þ ε;ωð Þ þ 1−ηα
� �

φiþ1 x1 þ ε;ωð Þ; ð5Þ

when Vi ≤ V(x1, xα) ≤ Vi + 1. The linear scaling factor is

ηα ¼ 1−V x1; xαð Þ−Vi

ΔV

� �
ð6Þ

and

ΔV ¼ Vmin x1 þ ε=2; xαð Þ−Vmax x1 þ ε=2; xαð Þ
N−1

� �
: ð7Þ

3. Results

To investigate the accuracy of implementing the automated LVWI
scheme (Eq. (5)), we generate a suite of synthetic waveforms through
the Horn River Basin velocity model of Maxwell (2009). Fig. 2 shows
the 6-layer vertical P-wave velocity model for the shale-gas reservoir,
where the targets for hydraulic stimulation are the Muskwa and Evie
shales. To explore the accuracy of the velocity model interpolation
approach, we compare the travel-time and amplitude predictions
from Eq. (5) for N = 2 to N = 7 velocity model interpolations with
the exact wide-angle equation (Eq. (1)). We compare the influence of
source frequency for a range of six dominant source frequencies (50,
100, 125, 150, 250 and 500 Hz) and three source depths (upper shale
at 2399 m, low velocity layer at 2510 m, and high velocity layer at
2490 m).

For all simulations, the wavefield is recorded along a vertical array
(128 geophones spaced 6.3 m vertically) giving an aperture of approxi-
mately 800m. Fig. 3 shows thewavefronts andwaveforms for a seismic
source located at 2399 m depth and having a dominant source
Fig. 2. P-wave velocity model of the Horn River Basin reservoir used in the wide-angle simu
sources. The inverted triangle symbols on the right show the relative depth extent of the verti
array is 250 m (not shown to scale in this figure).
frequency of 250 Hz. In this figure, it can be seen that as the number
of velocity interpolants (N) increases the level of detail in the computed
wavefield becomes sharper. Specifically, the computed waveforms and
wavefield complexity due to the low and high velocity layers become
more distinct and are much closer match to the exact solution as N
increases to the total number of discrete velocities (N = 7).

Themethodology used to compare the exact wide-anglewave equa-
tion predictions with the various velocity model interpolations uses
cross correlation to evaluate the time lag between the primary arrivals.
The computed time lag represents the estimated travel-time error. The
amplitude error is calculated after first correcting for the time lag
between the primary arrivals and then computing themaximum ampli-
tude of the two time-corrected arrivals. The amplitude difference is
expressed in terms of percentage difference from the exact wide-angle
maximum amplitude.

Figs. 4–6 show the results of comparing the exact wide-angle
solution with the LVWI for the 6 velocity model interpolations (N = 2
up to N = 7. In Fig. 4, we compare the amplitude difference (error) for
each velocity model interpolation for the 6 frequencies. Increasing the
velocity interpolants from N = 2 to N = 7 yields improved amplitude
matches as expected. However, as the dominant source frequency
increases so does the general amplitude error.

In Fig. 5, travel-time differences for each velocity model interpola-
tion with respect to the exact wide-angle solution are shown for the 6
frequencies. Increasing the velocity interpolants from N = 2 to N = 7
yields improved travel-time matches as expected. For the travel-time
predictions, the sensitivity to model interpolant and source frequency
is less severe compared to the amplitude differences shown in Fig. 4.
At N = 2, the travel-time error ranges between 5 ms and 10 ms, but
for N N 2 these errors fall below 2 ms regardless of source frequency. It
should be noted that the large travel-time errors computed for the
low velocity model interpolant cases are an artifact of the conventional
cross-correlation technique used (e.g., Whitecombe et al., 2010) related
to the distorted waveforms (i.e., receivers 90 to 110 in Fig. 3) within the
high/low velocity transition zone of the Mid-Devonian Carbonate layer
and the Evie Shale layer.

In Fig. 6, we compare both the amplitude and travel-time differences
for a 150 Hz dominant source frequency event but located at three
lations. The square symbols on the left represent the relative depth of the three seismic
cal array consisting of 128 geophones. The lateral distance between source and geophone

image of Fig.�2


Fig. 3. Vertical snapshot of wavefield after propagating a total distance of 250 m horizontally for N= 2, 3, 4, 5, 6, and 7 number of velocity model interpolants, and the exact wide-angle
solution. Since the time evolution of the wide-angle solution is computed in the frequency domain, the wavefield shows wrap-around in the time axis.

232 D.A. Angus et al. / Journal of Applied Geophysics 111 (2014) 228–233
different depths; 2399 m within the Muskwa shale, 2490 within the
Mid-Devonian carbonate, which acts as a high velocity layer, and 2510
within the Evie shale which acts as a low velocity layer (or wave
guide). For all depths, the general trend of improving amplitude and
travel-time prediction with increasing velocity model interpolant can
be seen. Furthermore, there appears to be no significant influence of
velocity contrast above and below the seismic event. Assuming travel-
time picking error of 2–3 ms (e.g. Humphries, 2009; Kocon and van
der Baan, 2012; Qiao and Bancroft, 2010), the results from Figs. 4–6
suggest a suitable value for model interpolation would be N = 3 or
N = 4. However, if accurate amplitude information is required
(e.g., for seismic moment tensor inversion) then N N 4 would be
necessary.
Fig. 4. Comparison of amplitude error in terms of % difference between the model
interpolant (N) solution and the exact wide-angle solution for seismic event located at
depth of 2399 m for all source frequencies.
4. Conclusions

We have shown that ray-based approaches are not necessarily
always suitable for all microseismic applications. For instance, eikonal
solvers compute very effectively the first arrival travel-time, regardless
of whether this arrival has any energy observable above the noise.
Furthermore, ray based approaches assume any velocity influence on
travel-time is localized along the infinitely thin ray path and hence
neglect velocity averaging that bandlimited seismic waves experience.
Analysis of the influence of velocity model uncertainty and source
frequency on location accuracy using an eikonal solver will be biased
Fig. 5. Comparison of travel-time error (ms) between the model interpolant (N) solution
and the exact wide-angle solution for seismic event located at depth of 2399 m for all
source frequencies. The large travel-time errors (between 30 and 40 ms) are due to
inaccurately modeled waveforms (i.e., receivers 90 to 110 in Fig. 3) within the high-to-
low velocity transition of the Mid-Devonian Carbonate and Evie Shales (Fig. 2). The
waveform distortion causes noticeable artifacts in the results of the conventional cross-
correlation technique used.
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Fig. 6. Comparison of (top) amplitude error in terms of % difference and (bottom) travel-
time error (ms) between the model interpolant (N) solution and the exact wide-angle
solution for seismic event with dominant frequency of 150 Hz.
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by the accuracy of the approximate forward propagator of the eikonal
location algorithm. Thus error estimates from ray-based algorithms
will not necessarily convey the true error. No amount of statistical
sophistication can provide accurate error estimates if the forward
model is not accurate enough. Thus, any mislocation will come not
only from errors in travel-time picking and velocity model uncertainty,
but also from limitations in the forward model (Green's function) used
in the event location algorithm.

In this paper, we have studied the feasibility of using wide-angle
one-way wave equations to compute travel-time and amplitude.
Although it is difficult to improve velocity model uncertainty, we can
certainly make improvements in the forward propagator in location
algorithms. Here we examine one approach to achieve computational
efficiency in the wide-angle wave equation and compare amplitude
and travel-time prediction errors to the exact wide-angle solution. The
results are promising considering that further computational and algo-
rithm efficiencies can be made. Although these results are applied to
acoustic media, the results have implications for wide-angle one-way
wave equations for 3D elastic, anisotropic media.
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