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a  b  s  t  r  a  c  t

In  2004,  injection  of  carbon  dioxide  (CO2) to be stored  at  depth  began  at the  In Salah  Carbon  Capture  and
Storage  (CCS)  site  and  a pilot  microseismic  monitoring  array was  installed  in  2009.  The  In  Salah  project
presents  an  unusual  dataset  since  it is  the first  major  non-Enhanced  Oil  Recovery  (EOR)  CCS  project  to
be  monitored  for microseismicity.  This  paper  outlines  an  extensive  seismological  study  using  a range  of
techniques,  relying  mainly  on  data  from  a  single  three-component  geophone.  Important  information  is
derived  from  the data,  such  as  event  locations,  event  magnitudes  and  fracture  characteristics,  that  could
be  used  in  real-time  to  regulate  the  geomechanical  response  of a  site  to CO2 injection.  The  event  rate
closely  follows  the  CO2 injection  rate,  with  a  total of 9506  seismic  events  detected.  The locations  for  a
carefully  selected  subset  of  events  are  estimated  to  occur  at or  below  the  injection  interval,  thereby  ruling
out  fault  or  fracture  activation  caused  by CO2 migration  at shallow  depths.  A  very  small  number  of  events
(11)  with  less  well-constrained  locations  may  have  occurred  above  the  injection  interval.  However,  there
is no  microseismic  evidence  that  these  events  are  correlated  with  CO2 injection  and  we suggest  they  are
caused  by  stress  transfer  rather  than  CO2 migration  into  the caprock.  The  observed  maximum  moment
magnitude,  Mw = 1.7,  is  consistent  with  estimated  fracture  dimensions  at the  injection  depth.  Fracture
orientation  estimated  using  shear-wave  splitting  analysis  is  approximately  NW-SE,  in  agreement  with
fracture  orientations  inferred  from  logging  data.  During  periods  of high  injection  rates  the  degree  of
anisotropy  increases  slightly  and  then  falls  back  to  original  values  when  injection  rates  fall. This  implies
the  CO2 is  opening  pre-existing  fractures  which  then  close  as pressure  decreases.

This  an  important  proof-of-concept  study  that  proves  the value  of  microseismic  monitoring  of  CCS

projects,  even  with  a limited  array.  We  thus  recommend  that  microseismic  monitoring  arrays  are installed
prior  to CO2 injection  at future  CCS  sites  to enhance  our understanding  by making  baseline  and  compar-
ative  studies  possible.  This  would  also  provide  real-time  monitoring  of the  geomechanical  response  to
injection,  allowing  operators  to  modify  injection  parameters  and to help  ensure  the  safe  operation  of a
project.

© 2014  The  Authors.  Published  by  Elsevier  Ltd.  This  is  an  open  access  article  under  the  CC  BY license
. Introduction

Carbon Capture and Storage (CCS) projects, where CO2 is
njected into the ground to be stored at depth, is one technology

ith the potential to reduce anthropogenic CO2 emissions to mit-
gate global warming. For the technology to be safe and effective,
his CO2 must remain trapped for thousands of years. However,
ew large-scale projects have so far come on-line and many ques-

ions remain about the geological and geomechanical response to
he injection of millions of tons of supercritical CO2 at up to several
ilometres depth. One particular concern for CO2 storage security
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is the potential for such projects to induce earthquakes (Zoback
and Gorelick, 2012; Verdon, 2014). Induced seismicity may  result
from the reactivation of pre-existing faults or fractures, or by gen-
erating new fracture networks. The injection of CO2 increases pore
pressure around an injection site which reduces frictional resis-
tance to fault slip and effective stress. Small stress perturbations in
an already critically stressed crust could therefore activate nearby
faults, resulting in pathways for CO2 leakage. Similarly, there is
an increased risk to safe storage if injection pressures exceed the
value required to produce new fracture networks extending into
the overburden.
Understanding a site’s geomechanical response to CO2 injection
is key to the success of a project because without this knowledge
the potential for CO2 leakage is unidentified. Even though only a
small number of CCS projects exist, it has been observed that the

nder the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Fig. 1. (a) Schematic illustration of the Krechba field showing the location of the injector (blue) and gas-producing (orange) wells. The star indicates the location of the
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icroseismic monitoring well and the horizontal extent of the gas–water contact is
s  produced from and the CO2 is injected into a ∼20 m thick reservoir at 1850–1900
riangles. (For interpretation of the references to color in this figure legend, the rea

eomechanical response to injection is very different depending
n the geological setting (Verdon et al., 2013). The Weyburn field,
anada and the Sleipner field in Norway are two major CCS projects
hat inject ≥1 million tonnes (Mt) of CO2 per year. At Weyburn CO2
as been injected for enhanced oil recovery (EOR) since 2000, with
ome increase in pore pressure (15–20 MPa) and a small number
f induced seismic events, ∼100 between 2003 and 2010 (Verdon
t al., 2011). To date the Sleipner field in Norway is the site of
he world’s largest non-EOR CCS project where around 14 million
onnes (Mt) of CO2 have been sequestered since 1996 and where
ressures are reported to have remained close to pre-injection lev-
ls (Chadwick et al., 2012). This makes significant geomechanical
eformation and seismic activity at the site unlikely. In contrast,

njection of <1 Mt  of CO2 at the Decatur CCS demonstration project
n the Illinois basin resulted in the detection of 1000s of microseis-

ic  events (Coueslan et al., 2013). In this study we focus on the
esponse at the In Salah storage site to CO2 injection using a variety
f seismological techniques. We  review the microseismic activity at
he site to investigate the possibility that CO2 injection 2009–2011
aused fracturing in the reservoir. In addition, we  look at how real-
ime microseismic data might be used to infer CO2 migration and
elp regulate the geomechanical response of a reservoir to injec-
ion. The techniques applied here are also important and relevant to
ontrolling site response in other industries that require fluid injec-
ion (e.g., wastewater injection; hydraulic fracturing and enhanced
eothermal stimulation).

. The In Salah CO2 storage site

The In Salah CO2 storage project at the gas-producing Krechba
eld in Algeria is a pioneering onshore CCS project that began

njection in 2004. Between 2004 and 2011, nearly 4 Mt  of CO2
as injected by three injection wells, KB-501, KB- 502 and KB-

03 (Fig. 1a; Ringrose et al., 2013). The CO2 was injected into the
20m thick downdip water leg of the gas reservoir at ∼1.9 km depth

Fig. 1b; Mathieson et al., 2010). The reservoir is overlain by ∼950 m
arboniferous mudstones, siltstones, and limestones which, in
urn, is overlain by Cretaceous sandstone deposits (Ringrose et al.,

009). This thickness of caprock makes it a good site for CO2 stor-
ge. However, the porosity and permeability of the storage rocks are
ow relative to other large-scale projects, ∼10% and 10 mD  respec-
ively (Eiken et al., 2011). To measure the site performance in terms
 by the black line. (b) Schematic illustration of the geology of the Krechba field. Gas
p. The positions of the geophones used in this study are also indicated by the green
referred to the web  version of this article.)

of injectivity and storage capacity a suite of geophysical and geo-
chemical monitoring methods were put in place (Mathieson et al.,
2011).

The response of the reservoir to CO2 injection has been observed
using two  key geophysical technologies: InSAR (Interferometric
Synthetic Aperture Radar) and 3D seismic surveys. Surface defor-
mation of up to several cm was  observed above the injection wells
through InSAR. Inversion of this data places deformation due to vol-
ume  and fracture aperture changes at reservoir depth around the
injection wells (Vasco et al., 2010; Rucci et al., 2013). The dimen-
sions and depth are in agreement with results from a 2009 3D
seismic survey concluding that injection has activated a deep frac-
ture zone extending NW of KB-502, several hundred metres wide
and extending about 150 m above the reservoir (Rutqvist, 2012).
The fracture zone is aligned parallel to the dominant NW-SE frac-
ture orientation and perpendicular to the minimum compressive
principal stress (Iding and Ringrose, 2010; Rutqvist, 2012), sup-
porting the idea that these observations are the result of fracture
opening in the lower caprock rather than opening or reactivation
of a large-fault.

3. Microseismic instrumentation and data

In 2009 a pilot microseismic monitoring array was  installed
in well KB-601, almost directly above the horizontal extension
of injector KB-502 (Fig. 1). Six three-component (3-C) 15 Hz
geophones between 80 m and 500 m deep were connected and
recorded continuous data at 500 Hz until June 2011 (Oye et al.,
2013). Unfortunately, due to technical issues (e.g., non-functioning
channels, cabling problems and malfunctioning GPS units), it has
only been possible to orientate and confidently process the data
from one 3-C geophone, the uppermost instrument at 80 m deep.
In addition the vertical component of the geophone at 160 m deep
provides reliable data.

We  use the two reliable vertical components of data to detect
events using cross-correlation methods similar to those described
in Forghani-Arani et al. (2013). Initially the short-term average
(STA) recorded amplitude to long-term average (LTA) amplitude

ratio is calculated using rolling time-windows. For the given veloc-
ity model (Oye, pers. comm. and Fig. 2) and assuming events occur
below the microseismic array, we estimate the expected travel-
time difference between P-phases arriving from below at the two
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Fig. 2. The 1D layered P- and S-wave velocity models used in the finite differ-
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nce  modelling and ray-tracing experiments to estimate event locations. The depth
ntervals of reservoir, lower caprock and upper caprock are also indicated.

eophones to be 0.02–0.05 s. Where the STA/LTA ratio exceeds a
iven threshold on both traces within the estimated travel-time
ifference, a potential event is identified. Through trial and error

 threshold of 2.4 was selected as providing the best balance,
aximising event detection while minimising false triggers. The P-

rrival times are picked at the times of maximum cross-correlation
etween the STA/LTA for the two vertical components (Fig. 3).
-phases are then picked manually. Using this method, 9506 micro-
eismic events were detected between August 2009 and June 2011,

000s of events more than have been detected using a conventional
TA/LTA trigger or master-event cross-correlation (Oye et al., 2013;
oertz-Allmann et al., 2014).

ig. 3. Illustration of the picking procedure. The vertical component seismograms for th
he  STA/LTA functions for these seismograms and in the bottom panel the STA/LTA funct
TA/LTA function is above the given threshold on both traces if the time shift, �t,  is withi
house Gas Control 32 (2015) 159–171 161

P-arrival particle motion is linear in the direction of propaga-
tion so to obtain an estimate of the direction (the azimuth and
inclination) to the source from the receiver we perform P-wave
particle motion analysis, following De Meersman et al. (2006). The
azimuth is defined as the angle clockwise from North and the
inclination is defined as the angle from vertical downwards. For
quality-control we measure the linearity of the P-wave particle
motion (De Meersman et al., 2006; Claassen, 2001) and the event
location results presented below include only the 1610 events with
linearity ≥0.95 (the linearity is 1 for perfectly linearly polarised P-
waves and 0.5 for circularly polarised particle motion). We  use a
variety of analyses in treatment of the data which are outlined in
the relevant sections.

4. Data analysis

A suite of techniques is applied to the data to gain maxi-
mum information from the single three-component geophone data.
Many standard techniques are unavailable for a single instrument
but we adapt and apply appropriate techniques to gain significant
and useful information from the dataset.

4.1. Event rate

The picking algorithm developed specifically for this data
resulted in 9506 P-arrival picks and following this 6280 S-arrivals
are picked by hand. The observed event rate correlates with the
injection rate at well KB-502, illustrated by the data in Fig. 4. The
event rate increases, and rises to a maximum of 400 events/day,
when the injection rate exceeds 25 million standard cubic feet
per day (mmscf/d), as is the case on several occasions between
February and July 2010. There is a delayed response of up to 14
days in the onset of seismicity following an increased injection
rate. This could be an example of what is known as the Kaiser
effect, which states that there is an absence of brittle failure in a
material until the load has exceeded the previously applied max-
imum load (Kaiser, 1959). Once the injection rate falls from these
high rates to zero, the number of detected events immediately
begins to drop and returns to <10 events/day within 1–7 days. This
behaviour suggests that even though high injection rates result in
adjusting the injection rate. The difference in the absolute num-
bers of events in February–March 2010 compared to April–June
2010 is thought to be result of the injection history. In 2009 only

e two  geophones (Z1 and Z2) are shown in the upper two panels. Below these are
ions are shifted for maximum cross-correlation. A P-arrival, tp , is picked where the
n the expected time difference for arrivals at the two geophones (0.02–0.05 s).
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(a)

(b)

Fig. 4. Histograms showing (a) the number of events detected early in the monitoring period (October 2009–May 2010) and (b) the number of events detected per day in
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010.  There is no microseismic data available for November and December 2010. Th
ay,  with the 25 mmscf/d level indicated by the dashed line. The green line is well-
he  reader is referred to the web  version of this article.)

mall quantities of CO2 were injected at KB502 and the well-head
ressure was low (∼70 bar, Fig. 4a). Once injection restarts it takes
ome time for the pressure to build up in the surrounding forma-
ion and following a sustained period of high well-head pressures

n April 2010 (Fig. 4a) the event rate dramatically increased, pre-
umably as the pressure increased at distance from the injection
oint.
ction rate at well KB-502 is shown by the red line in million standard cubic feet per
ressure/4 in bar. (For interpretation of the references to color in this figure legend,

4.2. Event clustering

If differences in arrival times of multiple seismic phases, for
example P- and S-waves, are available this enables the source-

station distance to be calculated, provided a velocity model is
available for the region in question. Using P- and S-arrival times,
the overwhelming majority of events recorded at the In Salah site
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(a) (b)

(c) (d)

Fig. 5. Example seismograms for events in (a) Cluster 1 (tsp∼0.95 s), (b) Cluster 2 tsp∼0.68 s), and events with t times (c) shorter and (d) longer than those observed for
Clusters  1 and 2. The two horizontal (X and Y) and the vertical (Z) components are given.

Fig. 6. tsp times measured for events throughout the monitoring period. The colour
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observed tsp times and directional information (the azimuth and
ndicates the azimuth of the P-arrival. (For interpretation of the references to color
n  this figure legend, the reader is referred to the web version of this article.)

an be separated into two distinct clusters that occur through-
ut the monitoring period and example seismograms are shown
n Fig. 5a and b. These occur in groups with almost constant S − P
rrival times, tsp, at ∼0.95 s and ∼0.68 s, illustrated in Fig. 6 and
ubsequently named Clusters 1 and 2, with 136 and 1226 events
espectively. At times, usually during periods of high injection rates
>25 mmscf/d), Cluster 2 spreads out to tsp = 0.68 ± 0.04s. If these
vents are repeating events, occurring at the same location and with
he same mechanism, then the waveforms within a cluster will be
ighly correlated. Cluster 1 shows such characteristics with >75%
f the events in Cluster 1 having similar waveforms with correla-
ion coefficients >0.9 (Fig. 7a and b). The variation within Cluster

 is greater, as would be expected because there is more variation

n tsp times in this cluster, but it contains two sub-clusters with
orrelation coefficients >0.9 that include most of the events in the
luster (Fig. 7c). These clusters show no evolution with time and
sp

events occur throughout the monitoring period. It seems a large
portion of the observed seismicity is repeating events, occurring
at two  locations and the similarity between waveforms within the
clusters suggests they have very similar mechanisms.

The azimuth and inclination measured for these events (Fig. 8)
shows Cluster 2 events occur almost directly below the array and
along a trend with an average azimuth of 109◦–289◦. These direc-
tions are consistent with the events occurring on a NW-SE oriented
fracture zone offset slightly to the West of the array. The events
observed here are more widely distributed than the four tight clus-
ters of events reported by (Goertz-Allmann et al., 2014). We  suggest
that this is a result of the differences between picking algorithms
since the arrivals identified in this study do not require any corre-
lation with previously observed events.

4.3. Event locations

To gain a full understanding of the movement of injected CO2
the location of any microseismicity is required. The extent of
microseismic activity is often taken to represent the extent of
hydraulic stimulation (e.g., Maxwell et al., 2002; Delépine et al.,
2004) although microseismicity can often occur through stress
transfer rather than directly being caused by the presence of fluids
(Orlecka-Sikora et al., 2009; Schoenball et al., 2012). The occur-
rence of microseismicity in the cap rock is a particular concern
for CCS sites if this indicates the activation of faults and fractures
that allows CO2 to migrate towards the surface. We  therefore use
inclination of recorded P-waves) to estimate the location of some
events and identify any sequences of microseismicity that could
indicate the migration of CO2 into the caprock.
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Fig. 7. (a) Correlation matrix for vertical component seismograms for events in Cluster 

and  (c) correlation matrix for vertical component seismograms for events in Cluster 2 wi

Fig. 8. Estimated azimuth (angular coordinate) and inclination (radial coordinate)
of P-arrivals coloured by tsp times. Results for arrivals with linearity ≥0.95 are shown.
T
r
t

a
m
o

he average azimuth is indicated by the line 109◦–289◦ . (For interpretation of the
eferences to color in this figure legend, the reader is referred to the web version of
his  article.)
Since we have data from only one observation point, estimating
ccurate hypocentres for the observed events is difficult. There are
any uncertainties in our observations. For example, our estimates

f station-source azimuth and inclination contain measurement
1 with correlation coefficients >0.9; (b) vertical waveforms for 20 of these events;
th correlation coefficients >0.9.

and systematic errors due to the presence of noise and ray-bending
in a layered velocity model.

To quantify the difference between observed inclinations, io, and
the geographical inclination from receiver to the hypocentre, ig, we
carry out finite difference modelling using E3D, a 3-D elastic seis-
mic  wave propagation code (Larsen and Grieger, 1998) and a 1-D
layered velocity model (Oye, pers. comm.;  Fig. 2). From the synthetic
waveforms we  estimate the difference between observed and geo-
graphical incidences, io − ig. We  do this for a range of tsp times using
a grid of locations estimated using an eikonal solver (Fig. 9) and find
that, for 0.60 s<tsp<0.85 s, ig − io < 5◦ for io < 15◦.

Using the criteria io < 15◦ we estimate locations for 1214 events
based on our measured azimuths, inclinations and the event loca-
tion grid illustrated in Fig. 9. The estimated depth and horizontal
distance of the events from the monitoring well give no indication
that seismic activity becomes shallower with time or moves above
the reservoir into the lower caprock (Fig. 10). The red colours in
Fig. 10 represent events that occurred during the first half of 2010
when the injection rate and event rate were high and the spread
in the estimated depths is ∼600 m.  Later in the sequence, in 2011
(day > 500), the events are restricted to a range in depths of ∼250 m.

Although absolute depths are difficult to determine here due to
errors in the velocity model and the number of instruments, rela-
tive depths show that high injection rates do appear to stimulate
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Fig. 9. Event depths and horizontal distances from the observation well for dif-
ferent tsp times, estimated using E3D. The colours represent the inclination of the
P-arrival measured from the synthetic waveforms. The caprock and reservoir layers
are  shaded as in Fig. 2 and the approximate injection interval is between the two
thicker black lines at ∼1.9 km deep. (For interpretation of the references to color in
this figure legend, the reader is referred to the web  version of this article.)

Fig. 10. Estimated depth and horizontal distance of events from observation well.
Locations are projected onto a SE-NW plane. The colours indicate the time of the
event in number of days since the earliest plotted event. Locations are estimated
for  events with io < 15◦ , linearity ≥0.95 and signal-to-noise ratio >3.0. The caprock
and  reservoir layers are shaded as in Fig. 2 and the approximate injection interval is
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Fig. 11. Raytracing results for P- (red) and S-waves (green) (lower panel) and tsp

times as a function of distance (upper panel), estimated using the provided isotropic
1-D velocity model and a source at 2.4 km deep (star). (For interpretation of the
etween the two  thicker black lines at ∼1.9 km deep. The green triangle indicates the
ocation of the geophone used in the analysis. (For interpretation of the references
o  color in this figure legend, the reader is referred to the web  version of this article.)

 larger area to become seismically active. We  do not observe any
ystematic shortening of tsp times over time this suggests that there
s no systematic migration of seismicity through the cap rock. This

s reassuring for the containment of CO2. We  do observe a small
umber of events (11) with shorter tsp times (<0.5 s) (Fig. 6). These
o not satisfy our criteria to estimate locations but their significance

s discussed below.
references to color in this figure legend, the reader is referred to the web version of
this article.)

To provide additional evidence for the approximate locations
obtained through finite-difference modelling we conduct a ray-
tracing exercise. The results from ray-tracing through the isotropic
1-D velocity model using the method of Kendall and Thomson
(1989) show that events with hypocentres at 2.4 km depth and
1.2 km horizontal distance from the array (Fig. 11).

To estimate errors in our reported locations we tested the effect
of the velocity model on the travel-times and, for example, we
locate Cluster 2 up to 450 m shallower if the velocity model is 10%
slower overall, if the near surface layer is 20% slower or if the model
is anisotropic (see Stork et al., 2015 for a detailed description). This
would place the events in this cluster between 1.65 km – 2.25 km
deep and therefore extending up to 150 m unto the lower caprock.
As an estimate of the error in horizontal distances from the array
we take the maximum horizontal distance between grid points in
Fig. 9, this is 174 m when tsp = 0.60s near 0◦ incidence. Event loca-
tions obtained using the two  methods, finite difference modelling
and ray-tracing, agree within the estimated errors.

Overall, the results for the estimated location of Cluster 2 show
that the seismicity occurred at depths over a range of ∼600 m at or
below the injection interval and at azimuths from the monitoring
well consistent with the activation of a pre-existing wide fracture
zone at the injection depth and extending into the lower caprock
(as reported by Iding and Ringrose (2010) and Rutqvist (2012)) with
events occurring on similarly oriented fractures within the zone. An
inaccurate velocity model significantly affects seismic event loca-
tions and if the velocity model is 10% slower this would imply that
the events extend into the lowermost 150 m of the caprock, consis-
tent with the previous fracture zone interpretation. An anisotropic
fractured medium may  also affect interpretation of the data.

We note that a few events occur outside the two main clusters
and example seismograms are shown in Fig. 5. We  find 11 events
with 0.31 s <tsp< 0.5 s (Fig. 6 and example seismograms in Fig. 5c).
According to our model locations in Fig. 9 these events are between

1.1 km and 1.8 km deep but, as with all locations reported here,
there are significant uncertainties in these locations. The events
occur over the whole monitoring period and there is no correlation
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ig. 12. Estimated Mw for P- and S-arrivals. Events are coloured by azimuth. (For
nterpretation of the references to color in this figure legend, the reader is referred
o  the web version of this article.)

ith injection and no evidence that observed tsp are becoming
horter with time. We  therefore suggest that these events do not
ndicate the presence of CO2 at shallower depths but that they are
imply isolated individual events caused by stress transfer.

In addition we identify 12 events with 1.5 s<tsp<2.2 s (example
eismograms in Fig. 5b). The estimated station-source azimuths for
1 of these are consistent with the events originating in the vicinity
f injection well KB-501. This implies that we detect a few micro-
eismic events associated with injection at KB-501. A more spatially
xtensive microseismic network would have been necessary to
now this for certain.

.4. Event magnitudes

With one 3-C geophone we are only able to obtain approximate
oment magnitude, Mw , values. However, we estimate seismic
oment, M0, for events satisfying the conditions linearity >0.95

nd ig − io < 5◦ with a signal-to-noise ratio >3.0 using

0 = 4��v3r�0

R
, (1)

where R is the P- or S-wave radiation pattern correction term, �
s the rock density, v is the P- or S-wave velocity at the source, r is
he source-receiver distance and �0 is the low frequency level of
he amplitude spectrum. We  have no estimate of focal mechanism
olutions so we use average radiation pattern corrections (0.44 for
-waves and 0.60 for S-waves: Boore and Boatwright, 1984) and
0 is taken directly from the amplitude spectrum at frequencies

50 Hz. The spectra are corrected for geometrical spreading and
ntrinsic attenuation for P- and S-waves, Qp and Qs, respectively.
ince we are unable to make a reliable estimate of Q directly we per-
orm 1000 iterations of the calculation using Q-values taken from a
andom uniform distribution with Qp = 100–400 and Qs = 100–400.

e also allow for some uncertainties in the velocity model using
 variation in velocity with a standard deviation of 5%. The aver-
ge of the P and S-wave magnitudes for the events ranges between
0.8 and 1.7 but the differences between estimates using P- and S-
rrivals can be up to ∼1.0 units (Fig. 12). This variation is thought to
e mainly attributable to the average radiation pattern correction

sed because the difference between the P- and S-estimates varies
ith azimuth (Fig. 12) and Stork et al. (2014) have shown that the
se of average radiation pattern correction terms can cause such
ncertainties.
nhouse Gas Control 32 (2015) 159–171

An important question in any CCS project is, what is the max-
imum magnitude earthquake that may  be triggered? Assuming a
circular source model with radius d, the stress drop, derived from
Eshelby (1957), is

��s = 7M0

16d3
. (2)

Assuming events with ��s between 0.1 MPa  and 10 MPa  (e.g.,
Abercrombie, 1995) and a maximum fracture radius of 100 m (Iding
and Ringrose, 2010), we estimate the maximum expected moment
magnitude from the pre-existing fractures to be between 1.6 and
2.9. This is similar to our reported maximum magnitude of 1.7 and
we therefore suggest that seismic activity with magnitudes up to ∼2
could have been reasonably expected before CO2 injection began.

The Gutenberg–Richter relationship, log 10N = a − bM where N
is the number of earthquakes greater than magnitude M, is the
commonly assumed frequency of occurrence distribution of earth-
quake magnitudes and is often used to characterise earthquake
generation. The b-value, the slope of the frequency-magnitude dis-
tribution, is globally found to be ∼1.0 but larger b-values have been
estimated up to ∼2.0 in volcanic regions and where fluid injec-
tion increases pore pressure and causes fracturing (McNutt, 2005;
Bachmann et al., 2012; Eaton et al., 2014). We  thus estimate b-
values for the In Salah data to test whether there is any variation in
event generation with injection rates, over time or with event loca-
tion. We  use the maximum likelihood method (Aki, 1965) to find
b and apply a Kolmogorov–Smirnoff test to find the completeness
magnitude. To estimate the standard error in b we  use the formu-
lae given by Shi and Bolt (1982). Overall, we  find b = 2.17 ± 0.09 for
average P- and S-wave magnitudes with a magnitude of complete-
ness of 0.1. This is a very high b-value but similar to the values
reported by other studies of fluid injection sites, for example dur-
ing hydraulic fracturing (Maxwell et al., 2009) and at Enhanced
Geothermal System (EGS) injections (Bachmann et al., 2012). How-
ever, looking at the data in more detail reveals that the b-value is
dependent on the station-source azimuth, rather than the injection
rate. Events to the WNW  of the array have b-values much closer
to 1.0 (1.47 ± 0.13; Fig. 13a) and events to the ESE occur with a
very high b-value (2.46 ± 0.18; Fig. 13b). As a consequence of using
average radiation pattern corrections to estimate Mw the b-value
is unreliable and depends on azimuth. However, the b-values esti-
mated here are all high (>1.4), and since Cluster 2 occurs within
a short (�1.0 km)  horizontal distances from the injection site, it is
likely that pore pressures are elevated in this area by the presence
of CO2, thus resulting in a proportionally large number of small
magnitudes events.

Our reported b-values for events to the WNW  of the array are
similar to the values reported by Goertz-Allmann et al. (2014) (their
clusters named B and D). For events to the ESE we  find a larger b-
value (2.5 compared to 1.7–1.9 reported by Goertz-Allmann et al.,
2014 for their Cluster C). As stated above, Mw estimates may  have
errors up to 1.0 units if only one instrument is available to make
the estimate due to uncertainties in radiation pattern corrections;
the time windows selected around the arrival; and uncertainties in
event location, velocities and attenuation (e.g., Stork et al., 2014).
In particular we  believe the estimated magnitudes of the events to
the ESE of the array are unreliable because there is poor agreement
between the values obtained from P- and S-arrivals. The differences
in magnitudes and b-values between this study and that by Goertz-
Allmann et al. (2014) reflect the uncertainties in the magnitude
estimates.
4.5. Fracture strike and density using shear-wave splitting

Anisotropic seismic wave velocities arise in rock with
aligned fracture sets with sizes and spacing smaller than the



A.L. Stork et al. / International Journal of Greenhouse Gas Control 32 (2015) 159–171 167

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

lo
g(

N
)

Magnitude

b =  1.47

(a)

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

3

lo
g(

N
)

Magnitude

b =  2.46

(b)

e azim

d
a
t
i
t
2
r
i
p
m
e
a
o
t
t
t
v
d
t
(

o
d
o
r
r
o
t
c
F
t
t
n
f
(
s
t
T
t
d
r
o
i
i
r
n
t

Fig. 13. b-Values estimated for events (a) with station-sourc

ominant wavelength (e.g., Hudson, 1980). Characterisation of this
nisotropy can therefore be used to infer fracture properties and to
his end shear-wave splitting analysis has been successfully applied
n hydrocarbon recovery and mining settings to determine frac-
ure strike, density and compliance ratios (e.g., Wuestefeld et al.,
011; Verdon and Wüstefeld, 2013; Baird et al., 2013). Tempo-
al variations in these characteristics provide important useful
nformation to operators regarding fluid flow behaviour and the
otential for cavity collapse events. We  therefore apply the auto-
ated approach to shear-wave splitting analysis of Wuestefeld

t al. (2010) to confirm previously reported fracture orientations
nd to look for any evidence of changes in the orientation or density
f the fractures with CO2 injection. This method computes split-
ing parameters, the strike of the fast polarisation direction, �,  and
he time delay between the fast and slow S-waves, ıt, using both
he cross-correlation (e.g., Bowman and Ando, 1987) and eigen-
alue (e.g., Silver and Chan, 1991) methods. A measurement is
eemed “good” using a quality index relying on the similarity of
he results of the two methods, as described in Wuestefeld et al.
2010).

For all events with S-wave picks we estimate �,  as a measure
f the dominant fracture direction, and ıt, as a measure of the
egree of anisotropy. For quality control we require a quality index
f >0.8 and an estimated error in � < 5◦ and we then inspect the
esults by hand. This leads to 349 “good” results and an example
esult is shown in Fig. 14. Fig. 14b and c highlights the advantage
f using two methods to compute shear-wave splitting parame-
ers since the cross-correlation results (Fig. 14c) show evidence of
ycle skipping which could lead to the wrong ıt being reported.
ig. 15 shows the � and ıt estimated for the 349 good results and
he noticeable feature of Fig. 15a is the consistency of strike of
he fast direction NW-SE. This provides an estimate of the domi-
ant fracture strike, 140◦–160◦, that is consistent with the results

rom logging data (Iding and Ringrose, 2010) and fracture modelling
Bond et al., 2013). Although the lower limit of delay time mea-
urements remains constant at ∼0.030 s between 2009 and 2011,
he upper limit during periods of high injection increases to 0.10 s.
he events with larger delay times originate mainly from east of
he monitoring well (red colours in Fig. 15b) Once injection rates
ecrease, towards the end of 2010, the upper limit for delay times
eturns to 0.05 s. This may  indicate that high injection rates are
pening pre-existing fractures around the injection well, resulting
n an apparent increase in fracture density, that then close follow-

ng the migration of CO2 through the fractures. These results do not
ule out the possibility that injection prior to August 2009 created
ew fractures or that fractures were created after August 2009 that
hese raypaths do not sample.
uths 270◦–310◦ , (b) with station-source azimuths 90◦–130◦ .

5. Discussion

5.1. Importance of experimental set-up

The microseismic data from the In Salah CCS site should be influ-
ential in the planning of future CCS projects in terms of how a site is
monitored. The project was  the first non-EOR >1 Mt  storage project
to be monitored by a microseismic array and the results presented
above prove the usefulness of the data in understanding the geome-
chanical response of the site to CO2 injection. The main advantage of
microseismic monitoring over other geophysical techniques, such
as 4D seismic reflection and InSAR, is that the data can be processed
in real-time and therefore analysis can provide an early warning
system for CO2 leakage or fault reactivation.

Unfortunately, due to the set-up of the pilot microseismic array
at In Salah, the information to be gained from this dataset is limited.
The main influence on the certainty of the results presented above is
the fact that only one 3-C geophone could be used in the analysis.
Accurate seismic event locations require multi-sensor arrays (>5
instruments) covering a wide aperture, allowing a detailed analysis
of which structures are being activated. However, we  have shown
that even a shallow microseismic array could be useful to monitor
the geomechanical response of CCS sites. With one instrument and
using particle motion analysis we  are able to constrain approximate
locations for some events and make observations of fracture prop-
erties. We  suggest that the repeating events in the clusters occur
along the NW-SE oriented pre-existing fracture zone with events
occurring on neighbouring fractures with very similar orientations,
hence the similarity in waveforms and tsp times within the clus-
ters. A schematic form of our interpretation in Fig. 16 illustrates
our inferred event epicentres and how fractures in the pre-existing
fracture zone are expected to open preferentially because they
are aligned with the present day direction of maximum horizon-
tal stress. However, we are unable to report accurate locations for
the events and our modelling and ray-tracing results suggest that
our locations estimated from the grid search could be in error by
up to ∼200 m horizontally due to the discretisation of the grid and
up to ∼500 m horizontally if the measured inclination is out by 5◦

(Fig. 9). Additionally, the depths could be in error by ∼400 m if there
are errors up to 10% in the velocity model.

Recently, some methods for single-station experiments have
been developed although these require specific set-ups, such as
significant coda waves recorded for highly correlated waveforms

from clusters of earthquakes (Robinson et al., 2013). When a CCS
project is undertaken a microseismic array should be deployed that
can be used to track the CO2 footprint using any seismic activity
and also that is able to detect unexpected seismic activity at some
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ethod. The best-fitting delay time and fast direction are shown. (d) Map  of erro
ethods is shown. The blue cross and red circle in (c) and (d) indicate the best fitting

egend,  the reader is referred to the web version of this article.)

istance from the injection point. For an overview of recommenda-
ions for microseismic array deployments at CCS sites see Verdon
t al. (2012).

Good coverage of the focal sphere also allows the computation
f focal mechanism solution and hence an understanding of the
ype of deformation taking place. With the available data from In
alah we are unable to do this with any confidence. Since we do not
now the focal mechanism solutions our estimates of Mw may  be in
rror up to 1.0 unit (Stork et al., 2014). The recording frequency of
00 Hz also affects our magnitude estimates since we cannot deter-
ine Q from the source spectra because the corner frequencies for

uch small earthquakes could be around the Nyquist frequency for
his data. If Q is to be estimated from source spectra it is recom-

ended that the recording frequency is at least 4 times the Nyquist
requency (McGarr, 1984; Baig and Urbancic, 2010).

Finally, the pilot microseismic monitoring array at In Salah was
eployed 5 years after injection began. It is therefore impossible
o assess the true impact of CO2 injection even with a perfectly
esigned array because the data cannot be compared to a base-

ine taken before injection began. Even so, the microseismic, 3D
eismic and InSAR monitoring clearly revealed how CO2 injection

as affecting the site, acting as an early warning system to ensure

he response could be controlled. This should provide confidence
n moving forward with other CCS sites, as long as appropriate

onitoring is in place. We  therefore recommend that a suitable
ces for the cross-correlation method. The combined quality value, Q, for the two
ts from the two  methods. (For interpretation of the references to color in this figure

microseismic array is installed at future CCS sites prior to the start
of injection activities.

5.2. Combining microseismic and geomechanical studies

It is important that any microseismic observations are combined
with geomechanical studies to verify the site response predicted
by geomechanical models. Verdon et al. (in preparation) combine
a history matched reservoir model that simulates pore pressure
changes caused by gas extraction and CO2 injection with a frac-
ture model to determine when and where Mohr–Coulomb failure
criteria were exceeded. This is verified against the results from this
study to understand the changes in the rate and location of seismic-
ity at the In Salah site through time. Such combined studies will
improve with developments in computing power and increased
complexity of models, with improved instrumentation and appro-
priate deployments of microseismic arrays. These types of studies
are essential for future projects to fully understand how sites react
to CO2 injection.

Recently, White et al. (2014) consider the evidence for dif-
ferent explanations for the observed geomechanical response at

In Salah. They conclude that the most likely explanation for
the observed surface deformation, seismic and pressure data is
that the lowermost caprock was hydrofractured by CO2 injection
and that preexisting fractures could play a significant role. Our
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ig. 15. (a) Histogram of the strike of the fast shear-wave. (b) Upper panel: Delay
utomated shear-wave splitting analysis. Lower panel: The red line is the CO2 injec
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hear-wave splitting observations, made towards the end of the
njection period, support the idea that preexisting fractures are
eing reactivated at this time.

Comparing and contrasting this study with that of Goertz-
llmann et al. (2014) shows many similarities but key differences.
he method used to pick arrival times significantly affects the num-
er of microseismic events identified (compare this study with
ye et al. (2013) and Goertz-Allmann et al. (2014)). In the present

tudy we find more but less tightly clustered events. This may  be
ecause our picking method does not rely on a correlation between
vents, only between receivers. We  observe similar variations in
vent rate, magnitudes and b-values to the aforementioned stud-
es. Small discrepancies between the studies may  be put down to

ifferences in processing techniques. However, in contrast to the
tudy of Goertz-Allmann et al. (2014) we observe variations in
he delay time between fast and slow shear-waves dependent on
he injection rate. This leads us to conclude that the injection is
 ıt, between the fast and slow shear-waves as a function of time, measured using
te and the black line is the 5 point moving average of ıt values. (For interpretation

f this article.)

opening preexisting fractures around the injection well that then
close as pressure reduces. This is an important difference in the
conclusions of the two  studies. Overall, we  find smaller delay times
than those reported by Goertz-Allmann et al. (2014) but we  find
similar results for events in our Cluster 1 (their Cluster A). The dif-
ferences between the inferred dominant fracture strike are more
difficult to explain. Our reported orientation (NW-SE) is in agree-
ment with fracture orientations derived from logging data (Iding
and Ringrose, 2010) and the regional maximum horizontal stress.
The difference between the studies may  be because we report
results for different events, both studies report results from <5%
of the total events detected.
5.3. Comparison with other CCS sites

The large number of events detected at the In Salah site is
in contrast to the very few events (∼100) that were detected at
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Fig. 16. (a) Schematic illustration of the interpreted locations of microseismic
events (circles) detected by the microseismic array in well KB-601 (star). Injection
well  KB-502 is marked by the square and the horizontal extent of this well by the
thicker black line. The dashed line is the estimated location of the reported fracture
zone. The green areas are the areas containing events according to our observa-
tions and modelling results. (b) A magnified image of the events in the fracture zone
aligned with the direction of maximum horizontal stress, �H , and a representation of
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egend, the reader is referred to the web version of this article.)

eyburn (Verdon et al., 2011), a large-scale CCS-EOR project that
as been studied using microseismic data. Despite substantial dif-

erences in physical properties (e.g., porosity and permeability) and
eomechanical response between major CCS sites (see Eiken et al.,
011; Verdon et al., 2013) each site successfully stores CO2 and to-
ate there has been no leakage reported at any site storing >1 Mt
f CO2. The significant microseismic activity recorded by the In
alah array does not necessarily imply that CO2 is leaking into the
aprock formation, and this is why it would be very beneficial to
nderstanding the site to be able to compute accurate and precise
vent locations. The study by Verdon et al. (2011) uses geomechan-
cal modelling to understand seismicity produced through stress
ransfer rather than directly by fluid movement at the Weyburn
ite. The few events with tsp < 0.5 observed in this study could result
rom similar effects. These observed differences between CCS sites
ighlight why it is important that each potential CCS site should
e carefully characterised and monitored to understand and verify
afe CO2 storage.

. Conclusion

Our observation and analysis of microseismicity recorded at the
n Salah CO2 sequestration site exhibits little variation in charac-
eristics throughout the monitoring period, 2009–2011. Although
housands of events are recorded, they occur in clusters with simi-
ar waveforms and apparently collocated hypocentres. Shear-wave
plitting analysis implies the rays are sampling fractures oriented
redominantly NW-SE. This is consistent with the observations of
he pre-existing dominant fracture orientation reported from bore-
ole logging data. The maximum estimated moment magnitude

f MW = 1.7 is also consistent with the fracture dimensions esti-
ated from the borehole data. There is some evidence from an

ncrease in shear-wave splitting delay times that pre-existing frac-
ures are opening in close proximity to the injection well during
nhouse Gas Control 32 (2015) 159–171

periods of high CO2 injection rates, thereby increasing the degree
of anisotropy. The delay times return to the original values when
injection rates fall, indicating a closure of fractures as pressure
reduces.

This body of evidence points to a predictable microseismic
response to the injection of CO2 at well KB-502. Even though the
instrumental set-up and data reliability place constraints on the
conclusions we  are able to draw from the microseismic data, our
analysis shows that events are likely occurring along a pre-existing
NW-SE oriented fracture zone close to the injection well. High b-
values (1.4–2.5) suggest that fluids are lubricating this fracture
zone, resulting in large numbers of small magnitude events. Rel-
ative to other major CO2 injection sites, the site at In Salah has low
porosity and permeability but the results of this and other geophys-
ical studies indicate that the injected volume is accommodated by
and confined to the fracture zone in the reservoir and lowermost
caprock, rather than creating or reactivating shallower fractures to
create pathways for CO2 to migrate to the surface. We  also note
that when injection ceases the rate of seismic events drops quickly
<10 events/day. It is reassuring to operators if seismicity can be
controlled in this way.

Unfortunately microseismic monitoring began at the In Salah
storage site five years after CO2 injection and therefore the results
and conclusions are based on data recorded 2009–2011. We  do
not make any assertions regarding the microseismicity or frac-
ture characteristics before August 2009. It is an important point
for future projects that, with baseline microseismic data and mon-
itoring when injection began, it would have been possible to gain
a much fuller understanding of the geomechanical response of
the site to CO2 injection and it is likely that microseismic data
would have highlighted the activation of the fracture zone before
it could be detected using other techniques, such as InSAR. Despite
the limitations of this microseismic dataset, the small number of
instruments and restricted monitoring period, this study shows
that useful information can be gained from the data to help reg-
ulate injection parameters and thus the response of the site CO2
injection.
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