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Automation of Shear-Wave Splitting Measurements using Cluster Analysis

by N. A. Teanby,* J.-M. Kendall, and M. van der Baan

Abstract The propagation of two orthogonally polarized shear waves, or shear-
wave splitting, is arguably the most robust indication of seismic anisotropy in the
Earth. This splitting can be parameterized in terms of the polarization of the fast
shear-wave � and the lag time between fast and slow components dt. These two
parameters provide constraints on the mechanism causing the anisotropy. All meth-
ods of calculating splitting require a shear-wave analysis window to be selected.
Then the � and dt that best account for the splitting in that window are calculated.
Conventionally the shear-wave analysis window is picked manually. However, man-
ual window selection is laborious and also very subjective; in many cases different
windows give very different results. We present a method for automating the selec-
tion of the window. First, the splitting analysis is performed for a range of window
lengths. Then a cluster analysis is applied in order to find those measurements that
are stable over many different windows. Once clusters of stable results have been
found, the final choice of shear-wave analysis window corresponds to the measure-
ment with the lowest error in the cluster with the lowest variance. Resulting estimates
of � and dt are objective, and very large datasets can be analyzed easily. The success
of the technique is illustrated with application to a microseismic dataset of 324 events,
which confirms previously published results using manually selected analysis
windows.

Introduction

Seismic anisotropy is a ubiquitous feature of most geo-
logical materials. This is because rocks generally exhibit fab-
ric or order, which leads to a directional dependence in seis-
mic velocities. When a shear wave propagates through an
anisotropic medium, energy is partitioned into orthogonally
polarized fast and slow shear waves, which have similar
waveforms. This property is referred to as “shear-wave split-
ting,” or sometimes “birefringence.” Splitting can be de-
scribed in terms of two parameters: the fast polarization di-
rection (�) and the lag time between fast and slow shear
waves (dt). These parameters provide information on the na-
ture of the rocks that the wave propagated through. Aniso-
tropy is caused by ordered features, such as fractures with
preferential alignments, or lattice preferred orientation (LPO)
of anisotropic minerals due to deposition or deformation.
Therefore, measurements of anisotropy provide constraints
on rock fabric and hence geological or geodynamical pro-
cesses.

Shear-wave splitting is routinely measured in teleseis-
mic data and is used to probe the fabric of crust and mantle
rocks (Silver, 1996; Savage, 1999; Kendall, 2000). The
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length scales of these observations vary from hundreds of
kilometers for teleseismic SKS and direct S phases (Park and
Levin, 2002; Wookey et al., 2002) to kilometer scales for
local shear waves (Gledhill and Stuart, 1996) and meter
scales for microseismic events (Bokelmann and Harjes,
2000; Teanby et al., 2004). Hence, splitting measurements
can be used to interpret LPO, fracturing, and geodynamical
processes over a large range of length scales.

A standard technique for measuring shear-wave split-
ting is the splitting correction method of Silver and Chan
(1991) (see also Vinnik et al. [1989]). In this method, a
shear-wave analysis window is selected manually and the �
and dt that best correct the splitting in this window are cal-
culated by means of a grid search. The method will be de-
scribed in more detail in the next section. A problem often
encountered when using this approach is that the calculated
� and dt are sensitive to the choice of shear-wave analysis
window. This means that manual selection of the shear-wave
analysis window is subjective and can heavily influence the
results. Automated window selection avoids this problem
and gives an objective measurement.

Data volumes obtained in microseismic studies tend to
grow quickly. In the study by Teanby et al. (2003), 324
located events were recorded on a single array of geophones
over an 8-week recording time. Current deployments aim
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for multiple geophone arrays and longer recording times.
Therefore, manual analysis of every event will be too time
consuming. Hence, we require an automated and objective
approach to still be able to handle such large data volumes
in a convenient way. These large datasets should provide
insights into lithological properties, making it possible to
constrain fracturing and intrinsic anisotropy in geological
models.

In this article, we attempt to automate the choice of
analysis window by performing a grid search over different
windows to find stable splitting measurements with small
error. This should make the study of large datasets practical,
while simultaneously reducing the subjectivity of measure-
ments. We apply the method to the microseismic dataset
from Teanby et al. (2003).

Automation of shear-wave splitting measurements has
been previously attempted by Savage et al. (1989) and Aster
et al. (1990). These methods have had some success with
local earthquake data and illustrate the importance of auto-
mation. However, the disadvantage of these methods is that
they do not address the effect that different shear-wave anal-
ysis windows can have on the results (see the Method sec-
tion). Also, these early studies use methods that only use a
small fraction of the waveform to find �. Our technique has
the advantage of investigating and trying to remove the de-
pendence of results on the exact analysis window. We also
use the full waveform technique of Silver and Chan (1991),
making our results less susceptible to noise.

Method

We base our automated shear-wave splitting technique
on the splitting correction method of Silver and Chan (1991).
First, a shear-wave analysis window is defined, which is nor-
mally picked manually. If anisotropy is present, the particle
motion within this window will be elliptical. Second, a grid
search over � and dt is performed, where both components
are rotated by � and one component is lagged by dt. The
result that has the lowest second eigenvalue of the corrected
particle-motion covariance matrix indicates linear particle
motion after correction and is the solution that best corrects
for the splitting. An F test is used to calculate the 95% con-
fidence interval for the optimum values for � and dt. Sandvol
and Hearn (1994) suggested an alternative method for cal-
culating errors in � and dt based on a bootstrap analysis.

After the splitting correction has been applied, we re-
quire that the corrected waveforms in the analysis window
match. The second eigenvalue of the particle-motion covar-
iance matrix provides a measure of this match. The smaller
the second eigenvalue, the better the match. We also require
the errors on the splitting parameters to be as low as possible,
and a threshold can be set in order to discard or keep results.
Cycle skipping, caused by noisy or bandlimited data, results
in multiple solutions with multiple values for � and dt. A
good result will have a unique solution. Criteria for reliable
results were discussed in Savage (1999) and Silver and Chan

(1991). Figure 1 shows an example of a reliable splitting
result.

Results are often sensitive to the exact choice of shear-
wave analysis window. Before we automate window selec-
tion, it is important to consider what is a good choice of
window. Most importantly, the window should be represen-
tative of the S wave and ideally be long enough to include
several periods of the dominant frequency to prevent cycle
skipping and decrease the influence of noise. However, it
should not be so long as to include spurious secondary
phases in later parts of the waveform, which will degrade
splitting estimates. Results from windows smaller than one
period tend to become unstable and have unrealistically low
errors because only small fragments of a wavelength need
to be matched. If there is no interference from other phases,
the entire S-wave energy envelope can be used, giving ex-
cellent and very robust results (e.g., Fig. 1). Choosing the
start of the window slightly before the onset of the shear
wave often stabilizes results and reduces cycle-skipping ef-
fects, which are often a problem for signals with limited
frequency content.

It is very important that the splitting parameters are sta-
ble over a wide range of different analysis windows. This
stability ensures that the measurement is robust but is time
consuming to test using manual window selection and is
therefore not typically reported in shear-wave splitting stud-
ies. On the other hand, we use exactly this feature to select
shear-wave analysis windows objectively and automatically.
Figure 2 illustrates how slight changes in the shear-wave
analysis window can drastically affect the splitting results.

To automate shear-wave splitting, we search over a
range of window start/end times to find the optimum window
for the splitting correction. Simply searching for the window
that gives the lowest error bars in the measurements is not
a good criterion as an unstable result, which is sensitive to
small window changes, may be selected. Instead we search
for measurements that are stable over many different anal-
ysis windows. This is achieved by varying the analysis win-
dow and looking for plateaus in dt and �. These plateaus
indicate stable splitting measurements, so that once the
proper plateau has been identified the window that gives the
smallest error can be selected. Figure 3 shows an example
of splitting parameters obtained for 250 different shear-wave
analysis windows. There is a stable plateau with small errors
around window number 20, which indicates a stable solu-
tion. The problem is then to automate the selection of such
plateaus.

Our method consists of three steps. First we calculate dt
and � for a range of start and end times of the shear-wave
analysis window. In a 2D plot of � against dt, stable regions
of the window space will condense into points, or tight clus-
ters, as shown in Figure 4. Second, we use cluster analysis
to identify the stable regions. Because an unsupervised tech-
nique is required, the two main considerations are the type
of clustering technique to use and a way to determine the
optimum number of clusters. Finally, when a set of clusters
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Figure 1. Illustration of Silver and Chan (1991) splitting correction technique on micro-
seismic data. (a) Raw data rotated into the frame of the ray such that a and b are perpendicular
to the ray path and c is along the ray path. P-wave particle motion was used to determine
the ray direction in this case (Teanby et al., 2003). P, P-wave pick; S, S-wave pick; A and
F are the beginning and end of the shear-wave analysis window. (b) A grid search over �
and dt is performed to find the parameters that best linearize the particle motion. The cross
shows the solution, and the thick contour is the 95% confidence interval. The labels next to
the figure give dt, fast direction, and source polarization direction. Directions are given in
the rotated (abc) frame and as projections into the geographic (enz) frame. (c) Fast and slow
shear waveforms (top) and particle motion (bottom) before (left) and after (right) the shear-
wave splitting correction. The fast and slow waves have similar waveforms, and the particle
motion has been linearized after the correction. (d) Radial and transverse components before
and after the splitting correction. The energy should be minimized on the corrected trans-
verse component in the shear-wave analysis window. This event meets all the reliability
criteria and is considered a reliable result.

has been decided upon, we use criteria based on the variance
of the clusters and measurements to determine the optimum
cluster and from this cluster the shear-wave analysis window
corresponding to the measurement with the smallest errors
on � and dt.

Shear-Wave Analysis Windows

The first step in our procedure is to set up a grid of
analysis windows. The beginning of the analysis window

Tbeg is allowed to vary between and , with NbegT Tbeg beg0 1

steps of DTbeg. Similarly, the end of the analysis window
Tend is allowed to vary between and , with NendT Tend end0 1

steps of DTend. The total number of analysis windows N is
therefore given by N � NbegNend, and the shear-wave anal-
ysis window is defined by

T � T � (i � 1)DT for i � 1 . . . N , (1)beg beg beg beg1
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Figure 2. The effect of shear-wave analysis window choice on splitting measure-
ments. (a) and (b) show the first choice of window and error surface. The solution is
dt � 30 msec and � � �78�. (c) and (d) show a second, slightly different choice of
window and corresponding error surface. This time the solution is dt � 13.75 msec
and � � �62�, a difference of over 16 msec. Both solutions meet all the reliability
criteria. This illustrates how slight changes in the analysis window can cause very
different solutions. In this case, the difference is due to cycle skipping because of the
band/limited nature of the data. However, it is not clear which one is the correct answer.

T � T � (j � 1)DT for j � 1 . . . N . (2)end end end end0

Each of the N analysis windows is assigned a unique window
number equal to (j � 1)Nbeg � i. However, this numbering
is only used for creating plots like Figure 3; the ordering of
windows in not important for the cluster analysis. Generally,
larger window numbers correspond to longer windows.

, , , and are all defined relative to the S-T T T Tbeg beg end end0 1 0 1

wave pick Ts. and define the minimum analysisT Tbeg end1 0

window. The extremes and must be such that theT Tbeg end0 1

window does not include any other phases.

Clustering and Stopping Criteria

Once the windows are defined, the splitting technique
of Silver and Chan (1991) is applied for each window. This
results in a set of N measurements of dt and �. An example

of these measurements is shown in Figure 3 as a function of
window number. We assume that reliable results are stable
over many different windows. Therefore, robust measure-
ments should be contained within clusters of similar mea-
surements. Figure 4 shows a scatter plot of the 250 mea-
surements of dt and � shown in Figure 3; measurements fall
into several distinct clusters. To identify these clusters, we
use an unsupervised cluster analysis (see Everitt et al. [2001]
for an overview of cluster analysis).

Implicit to all clustering techniques is the calculation of
distances between data points and/or clusters. Because dt and
� are on different scales (0–40 msec and �90� to 90�, re-
spectively) the data needs to be scaled or standardized before
clustering to give equal weighting to each variable when
assessing the proximity of clusters. Otherwise variations in
dt will be judged less severely than variations in �. We scale
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Figure 4. Measurements of dt and � obtained
from 250 different analysis windows. The plateaus
from Figure 3 condense into tight clusters of points.
Many points in the clusters lie on top of each other
because dt and � are found using a grid search. Clus-
ters are automatically identified using cluster analysis,
with triangles marking the cluster positions and a
cross marking the optimum cluster, with the lowest
variance .2ro

using the range of the variables, in our case 180� and 40
msec. Scaling by variable range has been shown to perform
very well in many clustering applications (Milligan and Coo-
per, 1988; Everitt et al., 2001). From now on, dt and � will
refer to the rescaled measurements.

Consider the N scaled measurements (dti , �i) with var-
iances ( ), i � 1 . . . N. The data will be partitioned2 2r , rdt �i i

into M clusters. In each cluster Cj, there are Nj data points,
where j � 1 . . . M. The dti and �i data points are clustered
using an hierarchical technique (Everitt et al., 2001). We
start with the same number of clusters as there are data points
(M � N) and calculate all the intercluster distances, taking
into account the cyclic nature of �. The intercluster distance
is simply the rescaled Euclidian distance between the cluster
centers. In using this distance measure, we assume that clus-
ters are characterized by isotropic variances, which is ap-
propriate for our application as we have no a priori knowl-
edge of the cluster structure. The two nearest clusters are
then combined so that the number of clusters decreases by
one. We continue combining clusters until there is only one
cluster (M � 1) comprising the whole dataset. The result is
a hierarchy of clusters.

For each number of clusters M � 1 . . . N, we calculate
the number of data points Nj in each cluster Cj and the po-
sitions of the cluster centers (Dtj , Uj), given by the mean
position of points within the cluster:

N (j)j dt� ii�1
Dt � , (3)j Nj
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N (j)j �� ii�1
U � , (4)j Nj

where and are the measurements that belong to clus-(j) (j)� dti i

ter j. The final clustering requires that we define the number
of clusters M. We wish to do this in an unsupervised manner,
that is, without any need for user input. This is a difficult
problem in cluster analysis, and there are many methods for
assessing the optimum number (Milligan and Cooper, 1985).
Fortunately the number of clusters is not critical for our anal-
ysis, as stable plateau regions correspond to fairly tight clus-
ters. The hierarchical clustering methodology will identify
very tight clusters first, and these should have a large number
of points. To determine the number of clusters, we use the
methods of Caliński and Harabasz (1974) and Duda and Hart
(1973). These were the top two performers in a comparison
of 30 estimators of optimum cluster number by Milligan and
Cooper (1985). Clustering is stopped when these criteria
pass specific thresholds.

We define the within-cluster covariance W and the
between-cluster covariance B as

M N M N(j) 2 (j) (j)j j(dt � Dt ) (dt � Dt )(� � U )� � i j � � i j i jj�1 i�1 j�1 i�1

W � , (5)
M N M N� (j) (j) (j) 2 �j j(dt � Dt )(� � U ) (� � U )� � i j i j � � i jj�1 i�1 j�1 i�1

M M2(Dt � Dt) (Dt � Dt)(U � U)� j � j jj�1 j�1

B � , (6)
M M� 2 �(Dt � Dt)(U � U) (U � U)� j j � jj�1 j�1

where and are the mean values of dt and � over all theDt U
samples:

N
dt� ii�1

Dt � , (7)
N

N
�� ii�1

U � . (8)
N

The Caliński and Harabasz (1974) criterion is

(N � M)trace(B)
c(M) � . (9)

(M � 1)trace(W)

The maximum of this function indicates that the between-
cluster variance is maximized with respect to the within-
cluster variance, indicating tight clusters that are widely
spaced. Therefore, the optimum number of clusters M is ob-
tained when c(M) is maximized.

The Duda and Hart (1973) criterion is based on the ratio
of within-cluster variances when two clusters are combined
into one cluster. The variance of the two individual clusters
is given by

2 Nj
2 (j) 2 (j) 2r � [(dt � Dt ) � (� � U ) ], (10)2 � � i j i j

j�1 i�1

and the variance when the two clusters are combined into
one cluster is

N1
2 (1) 2 (1) 2r � [(dt � Dt ) � (� � U ) ]. (11)1 � i 1 i 1

i�1

The null hypothesis is that the two clusters should be com-
bined as a single cluster. Normally distributed within-cluster
distances are assumed, and the null hypothesis is rejected
when

1/22r 2 N p2 j1 � � � c , (12)critical� 2 � � 2 �r pp 2[1 � 8/(p p)]1

where p is the number of parameters (�2, i.e., � and dt) and
ccritical is the critical value from a standard normal distribu-

tion. Milligan and Cooper (1985) found that ccritical � 3.20
gave the best results. We consider the hierarchy of clusters
from M � 1 . . . N and halt the subdivision of clusters when
equation (12) is no longer satisfied.

We used the maximum value of M predicted by the two
stopping criteria as the optimum number of clusters because
in our case it is preferable to overestimate the number of
clusters so that significantly different results are not included
in the same cluster. The preceding criteria given for deter-
mining M can become unstable for high numbers of clusters.
Therefore, it is advisable to set an upper limit on the number
of clusters Mmax. As there should be relatively few clusters,
the choice of this upper limit is not critical. Three clusters
were found in Figure 4.

Selection of Optimum Cluster and Measurement

Once the cluster centers and optimum number of clus-
ters have been determined, we must select the best cluster
and the best measurement from within this cluster. Criteria
for the best cluster are based on the number of points and
the variance within the cluster. All clusters with less than

data points are considered spurious and rejected. If thisNcmin

leaves no clusters, then there is no stable solution. isNcmin
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(a) (b) (c)

Figure 5. Three different cluster types: (a) diffuse
cluster with low individual measurement errors, (b)
tight cluster with high individual measurement errors,
and (c) tight cluster with low individual measurement
errors. Cluster (a) has high and low , cluster (b)2 2r rc d

has low and high , and cluster (c) has low and2 2 2r r rc d c

. Cluster (c) has the lowest value of and is the2 2r rd o

best cluster overall. We propose as a measure of2ro

cluster quality.

chosen such that it corresponds to approximately a cycle’s
worth of points.

The within-cluster variance and mean data variance,2rcj

of the remaining clusters are then calculated according2rdj

to

N (j) 2 (j) 2j (dt � Dt ) � (� � U )� i j i ji�12r � , (13)cj Nj

N N�1 �1j j1 12r � � . (14)d � �� ( j) 2� � ( j) 2�j (r ) (r )i�1 i�1dt �i i

Equation (14) is related to the harmonic mean, which re-
duces the effect of outliers. Figure 3 shows that there are
stable regions (tight clusters) with large measurement errors,
especially for long windows (high window numbers), char-
acterized by a high value of . It is also possible to have2rdj

unstable measurements (diffuse clusters) with low measure-
ment errors, especially for short windows, characterized by
a high value of . Therefore, we define an overall variance2rcj

for the cluster , which is set to max( ). The best2 2 2r r , ro c dj j j

cluster has the smallest value of . Although is a simple2 2r ro oj j

measure of cluster quality, minimizing avoids the selec-2roj

tion of diffuse clusters with low measurement errors and
tight clusters with high measurement errors, as illustrated in
Figure 5.

The best measurement is simply the measurement with
the smallest variance from within the best cluster. The best
measurement from the best cluster in our example is shown
with crosses in Figures 3 and 4. The splitting results using
this window are shown in Figure 6.

Diagnostic Plot

The diagnostic plot shown in Figure 6 is produced in
order to evaluate if the automated method has produced a
reliable measurement. The result is considered reliable if
(1) the energy on the corrected transverse component is min-
imized and about the same level as the noise, (2) the fast and
slow waveforms are similar and match well after correction,
(3) the particle motion in the shear-wave analysis window
is elliptical before correction and linear after, and (4) the
error surface has a unique well-constrained solution (i.e., no
cycle skipping and a small 95% confidence contour). The
scatter plot of dt and � should be inspected to ensure that
the number and positions of the automatically determined
clusters are reasonable. The stability of the splitting result
can be assessed by inspecting the variation of dt and � with
window number (e.g., Fig. 3). A stable splitting result should
have one plateau containing many points with low errors.

Application to Microseismic Data

The method has been tested on a dataset of 324 located
and picked microseismic events from the Valhall oil field in
the central North Sea (Dyer and Jones, 1998). This is a chalk

reservoir overlain by siltstone caprock in which oil produc-
tion has caused subsidence, leading to the occurrence of mi-
croseismic events as a mechanism for releasing stress. The
microseismic events were recorded over an 8-week period
on six three-component receivers in a vertical array located
between 2000 and 2100 m depth in a disused borehole. Data
from this microseismic study are characterized by lower
noise levels than teleseismic studies because the geophones
were buried at a depth of 2 km. We have previously per-
formed shear-wave splitting analysis on this dataset using
the method of Silver and Chan (1991) by manually selecting
the shear-wave analysis windows (Teanby et al., 2003).
Prior to the splitting analysis, seismograms were rotated into
the ray frame, using the P-wave particle motion as a proxy
for ray direction, in order to maximize the S-wave energy
on the two components used in the splitting analysis. Over
100 reliable results were obtained for each of the six receiv-
ers, exhibiting average splitting of around 10 msec. The
large number of events and availability of previous reliable
splitting measurements makes this dataset an excellent test
case for our automated technique.

We applied the automated method to the subset of mi-
croseismic data from Teanby et al. (2003) that gave reliable
shear-wave splitting measurements using manual window-
ing, so that manual and automated results could be com-
pared. The parameters used are given in Table 1. Parameters
were chosen such that the shear-wave analysis windows
(1) did not overlap with the P wave, which preceded the S
wave by well over 0.1 sec; (2) could encompass all of the
shear-wave energy envelope, which was typically less than
0.25 sec; and (3) included a minimum of one wavelength of
the dominant period (�0.04 sec at 30 Hz). was chosenNcmin

such that clusters contained at least a number of points
equivalent to a variation in window length of one dominant
period.

Figure 7 compares the manually windowed results from
Teanby et al. (2003) and the results obtained from the au-
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Figure 6. Diagnostic plot used to determine if the automated result is reliable. For
a reliable result, (1) the energy on the corrected transverse component should be min-
imized, (2) the fast and slow shear waves should be similar in shape and the particle
motion should be linearized after the splitting correction, (3) the error surface should
have a well constrained and unique solution, and (4) the cluster analysis has identified
the three clusters correctly. This example passes all the criteria and is considered
reliable.

Table 1
Parameters used for Automated Splitting Measurements on

the Valhall Microseismic Dataset

Parameter Value

Nbeg 5
Nend 50
N 250 (�Nbeg � Nend)
DTbeg 0.020 sec
DTend 0.005 sec
Tbeg1

0.010 sec before Ts

Tend0
0.040 sec after Ts

Ncmin
10

Mmax 20

tomated method. The results shown are for receiver number
1 (top of the array); the other five receivers give similar
results. Figure 7a,b shows all the results. There is a one–one
relationship between most of the manual and automated re-
sults. However, there is quite a lot of scatter about this line.
The scatter is much reduced in Figure 7c,d, where results
with large error bars (over 15� in � or over 1.5 msec in dt)
have been rejected. In Figure 7e,f, the diagnostic plots (like
the plot shown in Fig. 6) have been examined, and solutions
that do not satisfy the requirements for reliable splitting mea-
surements specified in the Diagnostic Plot section have been
rejected. This manual quality control is an important step
and has significantly improved the agreement between the
manual and automated measurements.
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Figure 7. Comparison of automated and manually windowed splitting results on
the Valhall microseismic dataset. The percentage of measurements where manual and
automatic results agree to within 15� or 1.5 msec is given in square brackets. (a) and
(b) show all the results, with no user interference or grade selection [64%]. (c) and (d)
show results after screening such that error bars are less than 15� or 1.5 msec [82%].
In (e) and (f) the results have been manually screened by inspecting the diagnostic
plots [92%]. There is very good agreement between manual and automatic results,
especially after rejecting measurements with large errors and manual quality control.

Discussion

In order to choose the window parameters, we must con-
sider (1) the dominant period of the S wave, (2) separation
of the S phase from other phases, and (3) the duration of S-
wave energy envelope. The most computationally important
parameters are Nbeg, Nend, Dtbeg, and Dtend. Large N and small
Dt give the most detailed exploration of the window space.
However, computation time is directly proportional to N, so
a compromise is required. Splitting measurements are usu-
ally more sensitive to the window end than the window be-
ginning, so Nbeg can be smaller than Nend and Dtbeg can be
larger than Dtend. The choice of Dtend depends on the sensi-
tivity of the splitting measurement to window choice, but
we found that a Dtend equivalent to about a tenth of a cycle
gave more than enough detail in most cases. andTbeg1

, which define the minimum window, are chosen suchTend0

that the minimum window starts slightly before the S-wave
pick, by an amount greater than the S-wave pick uncertainty,
and the window ends at least half a cycle after Ts. This cor-

responds to the minimum acceptable windows used in man-
ual analyses.

Parameter values should be chosen such that the ex-
tremes of the analysis window, and , do not overlapT Tbeg end0 1

with other phases that have different amounts of splitting.
Although the choice of and is subjective, the re-T Tbeg end0 1

sults will not be affected if all of the S-wave energy envelope
is included. However, when neighboring phases occur very
close together, it becomes difficult to avoid including inter-
fering phases in the analysis window. Here the choice of

and is more subjective, but the final splitting mea-T Tbeg end0 1

surement should still be robust as long as a large enough
range of analysis windows are included. If multiple phases,
with different amounts of splitting, are included in the anal-
ysis window, the automated method will either find no stable
solution, a spurious unreliable solution, or multiple clusters
with splitting parameters corresponding to each phase. How-
ever, all these cases should show up on the diagnostic plot
and some useful information may still be extracted, although
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this would complicate the analysis and is best avoided if
possible.

The maximum number of clusters Mmax is not critical,
as there are usually few clusters for well-constrained results.
A value of 20 should be applicable to most shear-wave split-
ting studies and stop spuriously high numbers of clusters
being defined. The minimum number of measurements

required for an acceptable cluster should be equivalentNcmin

to about a wavelength’s worth of points. However, it is ad-
visable for to be less than N/Mmax, especially if an initialNcmin

coarse grid search is being performed.
The method leads to code that is easily parallelized,

which makes the code simple to implement on parallel pro-
cessors. It also makes the choice of compiler and optimiza-
tion important. For the Valhall dataset, each event took 15
sec to process on a single 2-GHz processor with N � 250
and using a fully optimized compiler. For an experienced
interpreter, the inspection of diagnostic plots is very fast
(e.g., quality control on 152 events took 1 hr). This compares
well with manual window selection, which took around 1
week of solid work to study the same 152 events.

Of the 152 events processed for receiver 1, which all
had reliable splitting measurements when the analysis win-
dow was manually selected, 91 of the automated results
passed the quality control after inspection of the diagnostic
plots. Therefore, using the automated technique resulted in
about 40% fewer measurements than for manual window
picking. Some of these losses are due to rejection of events
that had window-sensitive results. However, an experienced
interpreter can always extract measurements from more
events than an automated technique. The loss of some suit-
able events is a price we need to pay for automated analyses.
On the other hand, an automated approach can handle data
volumes that would otherwise be prohibitively labor inten-
sive. Hence, the loss of events is not a significant problem
for large datasets.

To test if the method was generally applicable, we ap-
plied it to teleseismic S phases recorded in Australia, pre-
viously published by Wookey et al. (2002). The grid search
covered dt’s of up to 4 sec, and the parameters used in the
automation were the same as in Table 1 except DTbeg � 2.5
sec, DTend � 0.5 sec, � 1 sec, and � 8 sec.T Tbeg end1 0

Initial application to filtered teleseismic S-wave data was
successful and agreed with the manually windowed results
from Wookey et al. (2002). Even though each event was
studied individually, the method still speeded up analysis by
automating the choice of window within a user-defined max-
imum window, thus allowing us to assess the stability of the
measurement without resorting to labor-intensive repeated
manual analyses. Results could also be considered more ro-
bust as uncertainties about window dependence were re-
moved. Error bars on splitting measurements were reduced
due to optimization of the analysis window.

For this small teleseismic S-wave dataset (and also the
microseismic data), we used the same windowing parame-
ters for the whole dataset. In a general teleseismic dataset,

there is a large range of source-receiver distances, so some
parameters must be varied with distance. The maximum dt
in the error surface grid search could be set to be some frac-
tion of the total travel time from source to receiver. This will
give a more appropriate scaling of the dt measurements for
the cluster analysis. Travel-time tables could be used to pre-
dict the arrival of different phases and define the windowing
parameters so as to avoid including multiple phases in the
same analysis window. Additionally, a wave-field decom-
position method similar to that used by Kennett (1991) and
Bostock (1998) could be used to separate P and S phases.

Examination of the results from the Valhall microseis-
mic and Australian teleseismic data showed that the number
of clusters can vary from a single cluster, for very well
constrained measurements, to many clusters for less well
constrained measurements. Cluster shapes were generally
circular for well-constrained measurements, so that our
assumption of isotropic variance was valid. However, for
small amounts of splitting dt, the fast direction � is poorly
constrained and clusters tend to be elongated in the � direc-
tion. For these cases, the cluster analysis tended to split the
cluster into several small circular clusters. This could be
overcome by rescaling the variables over a different range,
thereby using anisotropic variances. Alternatively, the dis-
tance between closest points in two clusters could be used
as the distance measure instead of the cluster centers (Everitt
et al., 2001). However, we did not use this method, as it
tends to underestimate the number of clusters.

As mentioned in the Method section and shown in Fig-
ure 2, the strong window dependence/cycle skipping of some
splitting results is a serious problem. This problem is most
severe for band-limited data. Using an automated technique
reduces subjectivity of measurements but does not solve this
cycle-skipping problem. Wolfe and Silver (1998) discussed
a method to stack the error surfaces from multiple events/
stations for poorly constrained splitting measurements. This
adds consistency of measurements as an extra constraint and
helps to remove spurious results. The technique of Wolfe
and Silver (1998) could be applied directly to combine the
individual automated results, or alternatively a cluster anal-
ysis could be done on multiple events/stations simulta-
neously. Also, the results from the first and second best clus-
ter could be compared. If the first is obviously better than
the second then the result is reliable, otherwise results may
be affected by cycle skipping.

An important limitation of this cluster-based automation
method is that it cannot distinguish between a null measure-
ment, where there is no splitting, and a poorly constrained
result from noisy data. This is because the method relies on
identifying tight clusters of measurements using cluster anal-
ysis. It is therefore applicable to seismograms displaying fi-
nite anisotropy, where tight clusters form. However, for null
measurements � is totally unconstrained, leading to a large
spread in dt and an elongated 95% confidence contour.
Hence null measurements tend to have a large scatter of
points on a plot of dt versus �; consequently, no best cluster
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can be identified and the measurement is often rejected.
However, unlike noisy results, null measurements have lin-
ear particle motion and well-matched fast and slow waves
before any splitting correction is applied, which could be
identified by manual inspection of diagnostic plots. So a
semi-automatic null detection should be possible but would
require an extra quality-control step.

Conclusions

We have developed a method to automate shear-wave
splitting analysis. The most important features of this
method are that it removes the subjectivity of window se-
lection and increases the speed of data analysis. The method
can be used to improve the quality of shear-wave splitting
measurements and can be applied to large datasets that
would otherwise require a prohibitively long manual anal-
ysis. The method requires travel-time picks for the S phase
to be studied and a set of windowing parameters such that
interfering phases are not included in the analysis windows.
A limitation of the method is that null results are not auto-
matically detected. However, an extra quality-control step
may enable better detection.

Manual quality control of results is recommended.
However, this step is significantly faster than a complete
manual analysis, especially when the choice of windows is
not obvious. A diagnostic plot shows quickly whether the
results are satisfactory. The method has been applied to both
microseismic and teleseismic events and works well in both
cases.
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