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Signal Extraction and Automated Polarization Analysis of Multicomponent

Array Data

by K. De Meersman,* M. van der Baan, and J.-M. Kendall†

Abstract We present a method to extract seismic signals from three-component
array data and estimate their polarization properties at each station. The technique is
based on a singular value decomposition (SVD) of the complex three-component
analytic signal and applies to linearly as well as elliptically polarized seismic phases.
To increase accuracy we simultaneously analyze data from different stations and
apply a noise weighting based on prearrival data. For polarization analysis, an au-
tomated routine is also included. The automated routine selects the data window with
the best signal-to-noise ratio from which to obtain a polarization. A linearity measure
and a confidence interval accompany the polarization estimate at each station in the
array. We test our technique for automated polarization analysis on synthetic P-wave
data and compare results with those from other methods. A microseismic dataset
from the North Sea provides a unique opportunity to statistically compare previous
and independently obtained P-wave polarizations with those provided by the auto-
mated technique presented here. We conclude that, for P-wave polarization analysis,
our method is robust and significantly more accurate than conventional, mainly man-
ual methods. This is especially so on data with polarized and correlating background
noise. It is also faster and provides meaningful quality estimates.

Introduction

Signal extraction and polarization analysis forms an im-
portant part of the processing and interpretation of multi-
component seismic data. There are many examples in seis-
mology where polarization analysis helps with the
identification and classification of different seismic phases
(Flinn, 1965; Vidale, 1986; Mao and Gubbins, 1995; Earle,
1999). Knowing the polarization properties of seismic data
also helps with the design of so-called polarization filters.
These extract or attenuate signals with specific polarization
properties (Montalbetti and Kanasewich, 1970; Bataille and
Chiu, 1991; Reading et al., 2000; Du et al., 2000; de Franco
and Musacchio, 2001) Polarization analysis is also central
to the measurement of seismic anisotropy on P waves (Bear
et al., 1999; Schulte-Pelkum et al., 2001) and S waves (Sil-
ver and Chan, 1991; Teanby et al., 2004). Finally, P-wave
polarizations can provide estimates of the source azimuth
and thereby help constrain earthquake locations (Maxwell et
al., 1998; Dyer et al., 1999). Singular value decomposition
(SVD), or eigen value decomposition (EVD), is generally

used to estimate polarization properties and extract signal
from data. Both techniques are closely related matrix opera-
tions. SVD applies to rectangular matrices, whereas EVD ap-
plies to square matrices. In early applications the three-
component seismograms would be stored in a N by 3 matrix,
with N the number of samples (Flinn, 1965; Montalbetti and
Kanasewich, 1970). This time-domain approach suffers
from stability problems in short time windows around zero
crossings. A further restriction is that this approach can only
deal with linearly polarized phases. Replacing the seismic
data by their Fourier transforms, wavelet transforms, or an-
alytic signals allows for the analysis of phases with linear
and elliptical polarizations. Fourier and wavelet methods are
best to deal with interfering seismic phases with different
frequency content (Samson, 1973; Du et al., 2000). Analytic
signals permit the use of short analysis windows (Vidale,
1986). This is ideal when dealing with multiple short-
duration arrivals that are closely separated in time and have
similar frequency content.

Various authors have stacked information from different
three-component stations within an array (Jurkevics, 1988;
Bataille and Chiu, 1991; Earle, 1999). This improves signal
and polarization estimates because it increases the signal-to-
noise ratio. The method is nevertheless restricted to (small)
arrays over which signal and polarization properties remain
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constant. On the other hand it is possible to combine the N
data samples from k three-component stations into one large
N by 3k data matrix. SVD and EVD equally apply to these
large data matrices. This approach can handle polarization
variations within the array, and also benefits from an in-
creased signal-to-noise ratio (Bear et al., 1999).

EVD and SVD usually rely on the assumption that the
background noise is random and isotropic. A biased signal
and polarization estimate is obtained in cases where these
assumptions break down. Noise-weighted EVD and SVD can
counter the negative effects of polarized background noise
(Samson, 1983a, b; Du et al., 2000).

We present an automated time domain, weighted three-
component array technique for robust polarization estima-
tion. SVD and EVD are central to our approach, and follow-
ing Vidale (1986), we use the analytic signal. We have
combined this with multistation array analysis and noise
weighting as per Bear et al. (1999) and Samson (1983a).
The technique is applicable to array and repeat source data
that are contaminated with coherent and polarized noise. The
analysis window is automatically and iteratively optimized
by identifying those samples with large deviations from the
measured polarization and excluding them from the im-
proved analysis window in the next iteration.

Next, we discuss the three-component approach of Flinn
(1965) and then gradually add the components that make up
our method for signal extraction and polarization analysis.
The automated polarization analysis is introduced after-
wards. We then apply the technique to both a synthetic and
real P-wave dataset and discuss the results. The real data
come from a microseismic experiment in the North Sea Val-
hall oil field conducted in 1998. The examples cover three
main issues: (1) estimation and correction for relative ar-
rival-time differences between the different three-compo-
nent datasets, (2) the derivation of polarization uncertainty
estimates and other quality control parameters, and (3) eval-
uation of accuracy through comparisons with the exact po-
larization estimates for the synthetic example and manually
obtained estimates for the real dataset.

Singular Value Decomposition and Eigen Value
Decomposition

General Background

Given a three-component (3C) seismic dataset with the
seismograms n(t), e(t), and z(t) recorded in the north, east,
and vertical directions, we can construct a N by 3 data matrix
D in which each column represents a seismogram over the
time window t � [T1, TN], or D � [n(t), e(t), z(t)]. SVD and
EVD are popular techniques to find the waveform uS, mag-
nitude rS, and polarization vS of the signal that is present in
the data D. The SVD of the data in D is given by

3
T TD � UKV � r u v . (1)� i i i

i�1

where D is the product of the N by 3 matrix U, the 3 by 3
diagonal matrix K, and the transpose (T) of the 3 by 3 matrix
V. The unit left and right singular vectors ui and vi are the
three column vectors of U and V, respectively. The singular
values ri are the diagonal elements of K. By convention they
are ordered such that |r1| � |r2| � |r3| � 0.

The left singular vectors ui and right singular vectors vi

are mutually orthogonal, or UTU � I and VVT � I, where
I is the identity matrix. An SVD therefore decomposes the
data matrix D into its orthogonal parts . For 3C seis-Tr u vi i i

mic data riui represents the seismogram that is recorded by
the 3C receiver in the direction of the polarization vector vi.
It holds that riui � Dvi. The total seismic energy in the
polarization direction vi and over the interval [T1, TN] is
given by . It is a property of SVD that the polarization2ri

vectors vi give the directions of maximal , intermediate2r1

, and minimal seismic energy.2 2r r2 3

EVD is the decomposition of the data-correlation matrix
DTD into its eigenvalues and eigenvectors, yielding

3
T 2 T TD D � VK V � v k v . (2)� i i i

i�1

This definition follows immediately from (1). The squared
singular values give the eigenvalues . The right sin-2k � ri i

gular vectors vi are the eigenvectors of DTD and the left
singular vectors ui are the eigenvectors of DDT.

Influence of Isotropic Random Noise. There are several
important assumptions to consider when using SVD or EVD
to estimate the true signal rSuS and polarization vS from data
D. The signal must be linearly polarized, and the noise must
be isotropic and uncorrelated with the signal. Isotropic noise
is not polarized and its energy is equal in all directions. If
we assume that D � S � N, with the true 3CTS � r u vS S S

signal and N the 3C noise, then we can rewrite (2) and obtain

T T T TD D � S S � N N � v k v � k I. (3)S S S N

The noise correlation matrix NTN for isotropic random noise
is simply the product of the identity matrix I with the noise
energy in any direction kN. The first eigenvector v1 of the
data-correlation matrix DTD defines the direction of maxi-
mum energy in the data. This is automatically the signal
polarization and v1 � vS. The total energy in this direction
is , with k1 � k2 � k3 � kN. Since2k � r � k � k1 1 s N

D � S � N we find that the waveform r1u1 � Dv1 � (S
� N)v1 is composed of the signal rSuS � Sv1 and the part
of the random background Nv1. The signal-to-noise ratio
(SNR) of this signal estimate r1u1 is thus

k k � kS 1 2SNR � � . (4)
k kN 2

Influence of Nonisotropic Noise. The assumption of un-
correlated isotropic background noise is unrealistic for most
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Figure 1. (Left) Geometric forms of the data-,
signal-, and noise-correlation matrices, DTD and STS
respectively, and NTN for a 2D example. (Right) The
signal-to-noise ratio SNRh and data-variance kh as a
function of azimuth h. (a) Isotropic random noise and
linearly polarized signal. The major axis of the data-
correlation ellipse, v1, is parallel to the signal polari-
zation vector vS and the direction of maximal signal-
to-noise ratio vSNR. (b) Nonisotropic random noise
and linearly polarized signal without weighting. The
major axis of the data-correlation ellipse v1 is differ-
ent from the signal polarization vector vS and the di-
rection of maximal signal-to-noise ratio vSNR. (c) Ex-
ample b after weighting. The major axis of the
weighted data-correlation ellipse is parallel to thewv1

signal polarization vector . The vectors vSNR and v̂1
wvS

can be derived from and W � NTN.wv1

seismic applications. If the noise is polarized but uncorre-
lated with the signal then NTN � kNI, but still STN � 0 �
NTS. Expression (3) for the data-correlation matrix DTD be-
comes

3
T T T T TD D � S S � N N � v k v � v k v . (5)S S � N N Ni i iS

i�1

The noise correlation matrix NTN depends on the noise ei-
genvectors and the noise eigenvalues withv k k �N N Ni i 1

. In general, the first eigenvector v1 of thek � k � 0N N2 3

data-correlation matrix DTD and the signal polarization vec-
tor vS will be different. The angle between both vectors is
typically a function of the noise and signal polarizations and
of the ratios between signal and noise eigenvalues (Souriau
and Veinante, 1975; Bataille and Chiu, 1991).

We illustrate the problems with polarized noise in Fig-
ure 1. For simplicity we use a two-component example, but
the inferences made are true for any number of components.
Correlation matrices are square and symmetric and have
positive eigenvalues. They can be represented graphically as
ellipses (or ellipsoids for more dimensions), which are their
geometric forms. Figure 1a (left) shows the geometric forms
of the data-, signal-, and noise-correlation matrices, DTD,
STS, and NTN for synthetic data with isotropic noise. The
signal is linearly polarized and its correlation matrix is rep-
resented by a line. The geometric form of the isotropic noise-
correlation matrix is a circle.

Figure 1a (right) displays the variation in signal-to-noise
ratio SNRh and data variance, or data energy, kh as a function
of azimuth. For each azimuth h we can define a vector vh �
[cos(h), sin(h)]T. The data energy is then kh � |Dvh|

2. The

signal-to-noise ratio is the ratio of signal
2|Sv |hSNR �h 2|Nv |h

energy to noise energy. Figure 1a (right) shows that for data
with isotropic noise the signal polarization vS coincides with
the first eigenvector v1 and with the direction of maximal
signal-to-noise ratio vSNR. This vSNR is the vh for a h that
maximizes SNRh. Note that max(SNRh) � SNR in (4).

Figure 1b gives the geometric forms of the correlation
matrices and the signal-to-noise ratio SNRh and data-
variance kh as a function of azimuth h for the case where the
noise is not isotropic. Contrary to the isotropic case we find
that the first eigenvector of the data-correlation matrix v1,
the signal polarization vS, and the direction of maximal
signal-to-noise ratio vSNR are all different. Therefore, the first
left and right singular vectors u1 and v1 provide poor esti-
mates for the signal rSuS and its polarization vS. We also
point out that the isotropic definition of the signal-to-noise
ratio SNR in (4) no longer holds.

Weighted Decompositions

It is possible to correct for the presence of polarized
random noise by applying a weighting to the data D (Sam-
son, 1983a,b). We define the weighted data matrix Dw �

DW�0.5 � (S � N)W�0.5 and its correlation matrix DwTDw

for a weighting matrix W � NTN. When SVD (1) and EVD
(2) are applied to the weighted data and its correlation matrix
we get

3
w w w wT w w w TD � U K V � u r v , (6)� i i i

i�1

and
3

wT w w w w TD D � v k v . (7)� i i i
i�1
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From this point we will use the superscript w to identify
vectors and , and values and that result fromw w w wv u r ki i i i

SVD and EVD on weighted data Dw. Similarly to (3) and (5),
we can now rewrite the weighted data-correlation matrix
DwTDw as

wT w �0.5 T �0.5 w w w TD D � W S SW � I � v k v � I . (8)S S S

This expansion demonstrates how the weighting has effec-
tively transformed the polarized noise into isotropic noise,
since I � W�0.5NTNW�0.5. Weighting affects the signal
differently and the weighted signal Sw � SW�0.5 will have
a different polarization and amplitude. This follows from

. Here, the unit vectorw T �0.5 w w w T wS �r u v W �r u v vS S S S S S S

is the weighted signal polarization and w T �0.5r � r |v W |S S S

is the weighted signal amplitude. The signal remains un-
changed such that . As the noise in the weightedwu � uS S

data has now become isotropic, it will align with the direc-
tion of maximal weighted signal-to-noise ratio and thewvSNR

first eigenvector with the polarization vector of thew wv v1 S

weighted true signal (Fig. 1c). The signal-to-noise ratio of
the weighted signal estimate is found similarly to (4)w wr u1 1

and yields

w wk � k1 2wSNR � . (9)wk2

Equation (6) and the property that D � DwW0.5 lead to a
new decomposition for the data matrix

3 3
w w wT 0.5 TˆD � u r v W � û r̂ v . (10)� i i i � i i i

i�1 i�1

We use the unit vectors ûi and v̂i to represent the waveforms
and the polarizations of the signals in the data D. Their am-
plitudes are equal to . The polarization vectorsw w 0.5r̂ r |u W |i i i

v̂i are not mutually orthogonal and different from the vectors
vi in (1). The same is true for the amplitudes . Ther̂ � ri i

signal vectors ûi are orthogonal, but nevertheless different
from the vectors ui in (1). For completeness, (10) also leads
to a new decomposition for the data-correlation matrix

3 3
T 0.5 w w wT 0.5 Tˆˆ ˆD D � W v k v W � vk v . (11)� i i i � i i i

i�1 i�1

For signal and polarization estimation on data with noniso-
tropic noise these decompositions are superior to SVD (1)
and EVD (2). Earlier in Figure 1c we discussed that the first
weighted right eigenvector is identical with the weightedwv1

signal polarization . The accompanying weighted signalwvS

estimate of the true weighted signal has aw w w wr u r u1 1 S S

maximal signal-to-noise ratio. Because, Tr̂ û v̂ �i i i

it follows that v̂1 gives the true signal polar-w w w T 0.5r u v W1 1 1

ization vS and is the estimate for the true signal rSuSr̂ û1 1

with highest possible signal-to-noise ratio as per (9).

To summarize, noise-weighted data decomposition pro-
vides us with the least noise biased estimate of the true signal
and an accurate estimate of the true signal polarization. The
decomposition itself is achieved in three main steps:

• Estimate the weighting matrix W. In practice this is done
by using prearrival seismic data and by assuming that the
noise polarization properties are stationary over the length
of the experiment. Previous efforts have shown that
weighting is robust for small errors in the estimated noise-
correlation matrix (Samson, 1983; Du et al., 2000).

• Weight the data and determine the SVD of the weighted
data Dw (10).

• Apply the inverse weighting matrix to the SVD of Dw. This
leads to the new decomposition for the original data D,
which is given in (10).

Decompositions on Multiple Stations

SVD and EVD naturally apply to data with any number
of components and (6) and (7), or (10) and (11) can be gen-
eralized to deal with multiple 3C recordings simultaneously
(Bear and Pavlis, 1999). Each of these individual 3C data
matrices can contain information from a single event that is
recorded on multiple receivers, or from repeat source data
on the same receiver, or a combination of both. A new N by
3k data matrix D can then be generated by combining the k
individual 3C data matrices D j, with j � 1, . . ., k, such that
D � [D1, . . ., Dk]. We assume that the signal has identical
waveforms in each of the included datasets D j, but am-juS

plitudes and polarizations may vary. A moveout cor-j jr vS S

rection or time alignment between data from each 3C dataset
is usually required. The main difference between the single
and multistation approach is that the summation in equations
(6), (7), (10), and (11) must now be done over 3k instead of
3 and that the polarization vectors v̂i have 3k rather than 3
elements. The new 3k by 3k weighting matrix W is calcu-
lated from an N by 3k matrix with prearrival data from all
3C stations.

The ultimate aim is to interpret the multistation esti-
mates ûi, and v̂i, with i � 1, 3, . . ., k, in terms of signalsr̂i

and polarizations at the individual j � 1, . . ., k 3Cj jr̂ û v̂i i i

stations. To do this we break up the 3k-element polarization
vectors v̂i into k, 3-element vectors for each station j. Thejv̂i

values are also redistributed over the k original stationsr̂i

such that , v̂(3j � 1)i, v̂(3j)i]
T, withj jr̂ v̂ � r̂ [v̂ (3 j � 2)i i i i

v̂(3j)i the 3jth element of v̂i. For each station this results in
an alternative decomposition for the data matrix

3k
T Tj j j j jˆˆ ˆD � UK V � û r̂ v̂ , (12)� i i i

i�1

and for the data-correlation matrix

3k
T 2 T Tj j j j j j j jˆˆ ˆˆD D � V K V � v̂ k v̂ . (13)� i i i

i�1
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Contrary to the EVD and SVD decompositions in (1) and (2),
and the noise-weighted decompositions in (10) and (11),
where the data in each station are the sum of three signals,
the previous multistation decompositions view the data as
the sum of 3k different signals. The waveforms ûi of these
signals are the same for all stations, but their amplitudes jr̂i

and polarizations may vary.jv̂i

The main advantage of this multistation approach is that
it benefits from a potential increase in the signal-to-j-fold�
noise ratio, without the need to assume identical signal po-
larizations at all stations. The latter assumption is made
when stacking matrices. Even the influence of signal-
correlated noise will be reduced as long as this noise is not
present in all stations, or out of phase. Obviously this leads
to better estimates of the signal and theirj jr̂ û � r̂ ûS S 1 1

polarizations .j jv̂ � v̂S 1

Multistation data decompositions are achieved by com-
bining different 3C data matrices of the same wave into one
large data matrix. It is important that arrival-time differences
between the individual 3C datasets are corrected for. After
decomposition with (1) or (10) of the combined matrix, we
simply break up the multistation polarization vectors into 3C
polarization vectors that relate to the individual stations. This
leads to a new decomposition (12) for each individual sta-
tion, which consists of 3k uncorrelated signals with non-j jr̂ ûi i

orthogonal polarizations , where k is the number of 3Cjv̂i

stations in the analysis.

Analytic Signals

The use of time-domain signals limits us to analyzing
linearly polarized signals only. Signals with elliptical polar-
izations can be analyzed with the use of analytic signals
(Vidale, 1986). Linear polarizations are treated as a subset
of elliptical polarizations with infinite ellipticity. The use of
analytic signals also allows us to use shorter time windows
or even compute instantaneous polarization attributes
(Schimmel and Gallart, 2003). The single, multistation,
weighted, or unweighted equations (1), (2), (10), (11), (12),
and (13) can be used as before, but with the transpose (T)
replaced by the complex conjugate transpose (H). The ana-
lytic signals are formed by taking the original seismograms
and adding their Hilbert Transform as the complex part. The
new, complex data matrix Dy is then simply formed by re-
placing the real seismograms with the analytic signals. The
same applies to the construction of the complex weighting
matrix Wy. Note that from this point onward we use the
symbol y to distinguish between real matrices and vectors
and their complex counterparts.

If we take the complex data matrix Dy for the noise-
weighted multistation case then the waveform estimates

and polarization vectors will be complex, but they j y jû v̂i i

amplitudes remain real. Each column in is the
Hy j y j y j y jr̂ r̂ û v̂i i i i

product of the analytic signal with an element of they j y jr̂ ûi i

complex polarization vector . Typically these columnsHy jv̂ i

differ by a constant amplitude ratio and phase rotation. If we

consider only the real part ℜ , then its columns
Hy j y j y j(r̂ û v̂ )i i i

are still scaled and phase-rotated copies of one another. This
gives rise to elliptical particle motion and leads to the de-
composition of ℜ (Dy) into its elliptically polarised parts
ℜ . The semimajor, , and semiminor, , axes

Hy j y j y j j j(r̂ û v̂ ) a bi i i i i

of the polarization ellipse of each elliptical part result from
a real SVD (1) on ℜ . They can also be derived

Hy j y j y j(r̂ û v̂ )i i i

directly from the complex polarization vector, , as ex-y jv̂ i

plained in Samson and Olsen (1980) and Vidale (1986).

Automatic Estimation of Polarization

The basis of our automated procedure for polarization
analysis is a weighted multistation approach that uses the
analytic signal. The automation deals mainly with the prob-
lem of selecting the optimal data window t � [T1, T2] over
which the signal polarization is estimated. The aim is to
produce good-quality polarizations with meaningful uncer-
tainty estimates. The optimal analysis window should ex-
clude all prearrival and postarrival noise, and samples con-
taminated by coherent noise with deviating polarization
properties, such as secondary arrivals. This can be achieved
by iteratively removing samples from the analysis window
that produce unreasonably large-angle misfits relative to a
measured provisional polarization. Individual samples can
be removed because the use of analytic signals allows us to
estimate instantaneous polarization attributes.

We define our sample misfit angles c(t) from the
weighted data Dyw and its first left singular vector .y wv 1

ywH y w⎢d (t )v ⎢1
c (t ) � arccos . (14)

yw⎢d (t ) ⎢

The 3k-element data-vector dyw (t) represents one-time sam-
ple of the complex data and is a row vector of Dyw. The
complex matrix Dyw contains the moveout-corrected analytic
signals from k 3C stations. The c(t) values can vary between
0� and 90�, and give the angles between each data vector
and the provisional unit polarization vector . The angley wv 1

misfits are preferably derived from weighted data as weight-
ing normalizes the noise contribution of different stations
and receiver components, and makes the misfit angles c(t)
more sensitive to the presence of coherent noise.

The misfit angles are used to define the spherical vari-
ance v2, which is given by

T2
2 2v � 1 � w(t) cos c (t),�

t�T1

yw 2⎢d (t ) ⎢
where w(t) � . (15)

T2
yw 2⎢d (t ) ⎢�

t�T1

This definition varies slightly from Fisher et al. (2004) and
Butler (1992) because the contribution from each sample is
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Figure 2. Flowchart of the processing procedure
for automated P-wave polarization analysis on array
data. A three-step procedure is followed, starting with
the arrival-time alignment of data from different sta-
tions and followed by polarization analysis and qual-
ity control.

weighed according to its normalized energy w(t), and be-
cause the data are complex. In practice, the spherical vari-
ance is computed from the eigenvalues (7) of they wk i

weighted data-correlation matrix DywH Dyw by

y wk 12v � 1 � . (16)
all

y wk� i
i�1

For a confidence percentage � we define the interval [�l�,
�l�], in which � percent of the c(t) angles are expected to
lie. After Fisher et al. (2004) we have

l � arcsin e v and e � �ln (1 � �). (17)�� � �

The optimal data window for polarization analysis is found
by iteratively removing poor-quality samples from an initial
data window. At each iteration, a provisionally array-based
polarization vector vyw

1 is obtained with misfit angles c(t) for
the samples used. Poor-quality samples are identified by
misfit angles c(t) that lie outside the expectancy interval
[�l�, �l�]. This process is repeated until no outliers are
identified, or until a minimum number of remaining samples
is reached. Like the initial data window, the confidence per-
centage � and the minimum number of samples in the op-
timized window are user-defined parameters. We find the
confidence percentage � is generally over 85% for ade-
quately sampled data. The typical minimum number of sam-
ples is equivalent to halve or one dominant wavelength.

The optimized data window is usually irregularly sam-
pled in time and contains the most consistent samples within
the initial data window. Small changes in this initial data
window are therefore unlikely to affect the final solution.
Note that the statistics of our procedure use the c(t) values
of an entire array. These array-based estimates are preferred
over their station-based counterparts because they “average
out” possible non-Gaussian and bimodal behavior of the an-
gle misfits from individual stations. This benefits accuracy
and robustness in the presence of polarised background
noise.

Practical Implementation on P-Wave Array Data

The automated technique is applied in a three-stage pro-
cedure to P-wave events from a 3C receiver array (Fig. 2).
The first stage obtains accurate relative P-wave arrival times
between the different 3C receivers. The second stage is our
automated polarization analysis. The final stage uses esti-
mated linearities and uncertainties to perform quality control
and to identify stations with poor results. Estimates from the
identified bad stations are discarded and the complete three-
stage process is repeated for the remaining stations.

To avoid introducing artificial phase effects when esti-
mating the signal and polarization, it is vital that the relative
arrival times between stations are known accurately. We use

an iterative and coherency-based stack optimization tech-
nique similar to that of Rowe et al. (2002). Manually picked
arrival times are used to generate a 3C stack called the pilot
trace. Cross-correlation functions between the 3C pilot and
the 3C data from each station provide P-wave arrival-time
corrections at every station. A new 3C pilot trace is then
created with updated arrival times. This process is repeated
until the arrival-time corrections converge to zero. Conver-
sion usually occurs quickly (� three iterations). It is best to
use noise-weighted data Dw to minimize the negative effects
of stations with high noise levels.
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In the final stage, a complex polarization estimate y jv̂ 1

at each jth 3C station is obtained from (12). We take as
the P-wave polarization, the semimajor axis ja �1

of the polarization ellipse defined byj j j T[a (1), a (2), a (3)]1 1 1

the complex polarization . The P-wave polarization azi-y jv̂ 1

muth hj and inclination �j in each station are given by:

ja (2)1
h � arctan , (18)j � j �a (1)1

2 2j j�a (2) � a (1)1 1
� � arctan . (19)j j� �a (3)1

We introduce two useful quality-control parameters for P-
wave analysis. The first is P-wave linearity linj and the sec-
ond is a confidence interval on the P-wave[�e , � e ]� �j j

polarization, . After Claassen (2001) we defineja 1

jlin � ⎢a ⎥ . (20)j 1

The linearity linj is 1 for perfectly linearly polarized P waves
and decreases to 0.5 for P waves with circular polarizations.
For P waves with high linearities we can relate the spherical
variance v2 in (16) to an uncertainty estimate for the P-wave
polarization a1

j. If N is the number of samples in the opti-
mized analysis window, then the angular confidence interval

relates to the confidence percentage �. Simi-[�e , � e ]� �j j

lar to Fisher et al. (2004) we have

e v�e � arcsin and where e is defined in (17). (21)� �j N�

Examples

Synthetic P-Wave Example

The following tests on synthetic data compare our au-
tomated weighted multistation polarization analysis with un-
weighted and single-station methods. They also verify the
use and reliability of the proposed quality-control parameters

and linj. The synthetic data are from a four-station 3Ce�j

array with 1-msec sampling interval (Fig. 3). The P wave is
a 30-Hz sine wave with exponential amplitude decay. P-
wave energy and arrival times are kept constant between
stations. Stations 3 and 4 are both contaminated with verti-
cally polarized coherent noise. At station 3 this noise is a
delayed 25-Hz sine wave, and at station 4 it is a simulta-
neously arriving 30-Hz cosine wave. Both waves have ex-
ponential amplitude decays and cause nonlinear particle mo-
tion. Random background noise is added to all stations. On
stations 2 and 4 the energy level of this noise on the vertical
component is increased so it becomes polarized. All other
relevant signal and noise parameters are given in Table 1.

The noise is such that the signal-to-noise ratio decreases with
station number.

In a first test we evaluate five alternative analysis meth-
ods by comparing polarization estimation errors with respect
to the known signal polarizations. The confidence intervals

and linearities linj that accompany these po-[�e , � e ]95 95j j

larization estimates are also considered. Table 2 provides the
average test results from 200 realizations with different
added random background noise. Note that the synthetic data
in this test are optimally time aligned and therefore do not
require a cross-correlation-based data alignment. Next is a
summary of the five polarization analysis techniques used:

1. Single-station 3C approach with isotropic noise assump-
tion as in equation (1) and similar to Vidale (1986).

2. Single-station 3C approach with noise weighting as in
equation (10) and similar to Samson (1983b).

3. Multistation approach with noise weighting as in equa-
tion (12).

4. Noise-weighted single-station approach as in equation
(10) and with window optimization applied.

5. Noise-weighted multistation approach as in equation (12)
and with window optimization applied.

These techniques are tested on 150-msec-long (initial) data
windows. In weighting, the weighting matrix is calculated
from 100 msec of simulated prearrival noise. An example of
this prearrival noise is shown on Figure 3. Analysis methods
that apply window optimization (methods 3 and 5) use an
interval of [�l90, �l90] to identify bad-quality samples.
The minimum number of samples in the optimized analysis
window is 30.

The estimation errors reported in Table 2 indicate sig-
nificant variations in accuracy between the different tech-
niques and stations. The data in station 1 are composed of
signal and isotropic random noise and satisfy the require-
ments for 3C unweighted SVD. As expected, all tested meth-
ods accurately estimate the P-wave polarizations. The signal
in station 2 is contaminated by polarized random background
noise and satisfies the requirements for weighted analyses.
The superiority of weighted approaches in this case is con-
firmed by comparing measurement errors from methods 1
and 2 in Table 2. The typical error for any of the weighted
methods is 0� on average. It is 14.5� for the unweighted 3C
estimate. The data in station 3 are composed of signal and
later-arriving correlated noise. Both weighted and un-
weighted methods cannot handle this situation if the entire
150-msec analysis window is used. The most accurate po-
larization estimates are found with our window optimization
procedure (methods 4 and 5 in Table 2). This successfully
removes the secondary arrival from the analysis window.
Station 4 records signal with polarized random background
noise and simultaneously arriving coherent noise. None of
the tested methods is expected to handle this situation per-
fectly. However, the errors on multistation polarizations
(�7� for methods 3 and 5) are significantly smaller than
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Figure 3. Synthetic 3C P-wave dataset from a four-station array. For each station
and from left to right we show the data, its signal part, and its coherent and random
noise parts. The signal is a 30-Hz sine wave arriving at time � 0 msec. The coherent
noise in station 3 arrives 35 msec after the signal and is a vertically polarized 25-Hz
sine wave. The coherent noise on station 4 is a 30-Hz cosine wave and arrives with
the signal. Signal and coherent noise have exponential amplitude decay. Stations 2 and
4 are also contaminated with vertically polarized random background noise. More in-
formation on data properties can be found in Table 1.

those on single-station estimates (�16� for methods 1, 2,
and 4). Linearities linj from single-station analyses (methods
1, 2, and 4) are typically high (�90%), yielding a misleading
confidence in the estimations. In fact, only linearities from
our method (5 in list) correctly indicate the accuracy of the
polarization estimates. Similar observations can be made for
the confidence intervals that accompany the[�e , �e ]95 95j j

polarization estimates. These intervals are mainly a function
of the signal-to-noise ratio at the station of interest and the
number of samples used. The multistation approach best
separates the signal from background noise and produces
more reliable uncertainties for the polarizations. Single-
station polarization analyses underestimate the amount of
noise in the data and, as a result, the uncertainty intervals.

To summarize we find that all tested methods provide
similar and accurate results on good-quality data. On poor-
quality data with polarized noise we find that our technique
is superior to any of the other tested methods. Our approach
also provides the most reliable polarization linearity linj and
confidence estimates in any case.e95j

Table 1
Signal and Noise Parameters for the Synthetic 3C Array P-Wave

Dataset in Figure 3

Station Number

Synthetic Data Properties 1 2 3 4

Signal
Azimuth (deg) 55 60 65 65
Inclination (deg) 30 35 40 45
Energy 1 1 1 1

Coherent noise
Azimuth (deg) — — 0 0
Inclination (deg) — — 90 90
Energy 0 0 0.5 0.66
Time delay (msec) 0 0 35 0

Random noise
Energy (north) 0.06 0.06 0.06 0.06
Energy (east) 0.06 0.06 0.06 0.06
Energy (vertical) 0.06 0.5 0.06 0.5

Signal-to-noise energy ratio 5.5 1.6 1.5 0.8

The signal-to-noise values (SNR) are not derived using equations (9)
or (4), but obtained directly from the synthetic data specifications in this
table.
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Table 2
True Error, Linearity (linj), and Confidence Estimate ( ) for P-Wave Polarization Estimates,e95j

Obtained Using Five Alternative Measuring Techniques on Synthetic Data

Station Number

1 2 3 4

3C complex SVD (1) Error (deg) 0 14.5 17 24.5
(no weighting) linj (%) 99.9 99.8 99.5 96.1

(deg)e95j
2.5 4 3 2.5

3C complex SVD (2) Error (deg) 0 0 17 16.5
(with weighting) linj (%) 99.9 99.8 99.4 94.4

(deg)e95j
2.5 5 3 4

4�3C complex SVD (3) Error (deg) 0 0 9.5 6.5
(with weighting) linj (%) 99.3 99.2 96.6 85.8

(deg)e95j
3.5 5 4 4.5

3C complex SVD (4) Error (deg) 0 0 2 16
(with weighting and optimized window) linj (%) 99.9 99.8 99.6 94.2

(deg)e95j
2.5 5.5 4 4

4�3C complex SVD (5) Error (deg) 0 0 0 8.5
(with weighting and optimized window) linj (%) 98.4 98.2 98.4 87.6

(deg)e95j
3.5 6.5 4 6

The reported values are the averages of 200 realizations using the synthetic data described in Figure 3 and
Table 1. Each confidence interval defines the opening angle of the confidence cone that has the estimated
polarization as axis. The estimates with window optimization relate to a sample misfit acceptance interval of
[�l90, �l90] and a minimum number of 30 samples in the optimized window.

The next synthetic test investigates the working of our
method in the presence of relative arrival-time errors be-
tween stations. This is to simulate the case where no cross-
correlation data alignment is applied, or where the data do
not allow a robust arrival-time alignment. We use the same
data as in the previous test, but impose random arrival-time
perturbations at each station. These perturbations have stan-
dard deviations of respectively, 0 sec, 1 sec, 2 sec, 3 sec,
4 sec, and 5 sec. A 5-sec arrival-time error at individual
stations translates in a 10-sec relative timing error between
stations. This is significant in relation to the 33 sec (30 Hz)
dominant wavelength of the synthetic data.

Figure 4 shows how, for each station, the polarization
errors, confidence estiamtes , and linearities linj responde95j

to increasing arrival-time errors. These average estimates
and their error bars are calculated from 200 realizations with
different added random background noise. In general, the
figure indicates a gradual reliability deterioration of polari-
zations and their quality estimates with increasing arrival-
time errors. Mistimings are especially problematic in stations
with correlated noise. This is evident from the changes in
polarization errors at stations 3 and 4. Contrary to the li-
nearities linj, we find that the confidence estimates varye95j

only slightly. Timing errors with standard deviations as low
as 3 msec cause the linearities at stations 1 to 3 to drop from
98.5% � 1% to 90% � 10%. At station 4 the linearities
drop from 87.5% � 2% to 80% � 20%. This test indicates
that an accurate arrival-time correction is vital to the proper
working of our method. When such accurate time alignment

is impossible the quality estimates, especially linearities, will
nevertheless indicate that polarization estimates are unreli-
able. Linearities provided by our polarization analysis are
therefore especially useful to identify stations with poor data
quality and/or poor arrival-time alignment.

Real Data Example

Dataset. The real data used for testing our automated ap-
proach comes from a passive seismic-monitoring experiment
that was conducted in the Valhall oil field in 1998. This field
is situated in the Norwegian sector of the Central North Sea
Graben. The reservoir rock is a mechanically weak and
highly porous chalk that is compacting in response to pro-
duction. This compaction has lead to seafloor subsidence of
up to 4 m and is considered the main reason for microseismic
activity within the reservoir overburden (Dyer et al., 1999).
Between 2 June and 26 July 1998 a CGG-SST500, six-level,
3C, 30-Hz geophone string was installed in well 2/8-A3B.
The geophone stations were deployed at 20-m intervals be-
tween depths of 2000 and 2100m, just above the reservoir
and are numbered from 1 to 6 with increasing depth (Fig. 5).
The data have a sampling rate of 1000 Hz. A total of 303
locatable events were recorded during the experiment (Dyer
and Jones, 1998). The locations of these events are calcu-
lated using a local velocity model, the P-wave and S-wave
arrival times, and the P-wave polarizations at each station
along the vertical array. Because the Valhall experiment uses
a linear vertical array, the P-wave polarizations serve as es-
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Figure 4. Results of a test that investigates the performance of our technique in the
presence of arrival time errors between stations. The horizontal axis indicates the stan-
dard deviation of the random arrival time perturbation at individual stations. The re-
ported values for polarization error, linearity, and confidence intervals are the averages
of 200 realizations using the synthetic data described in Figure 3 and Table 1. The error
bars relate to half the standard deviation of the average values.

timates for the source-receiver direction. They are absolutely
vital to adequately constrain the source locations. In early
work the P-wave polarizations were obtained manually us-
ing a single station, unweighted EVD on raw P-wave data
(Dyer et al., 1999). We use these results as a benchmark.

The overall noise polarization properties are investi-
gated using prearrival data. For the top four stations we
found that the noise is predominantly isotropically polarized.
The bottom station, and station 5 to a lesser extent, experi-
enced 5 to 10 times higher levels of mainly horizontally
polarized noise. This noise is thought to be related to the
unclamped weight, attached to the lowermost geophone sta-
tion (R. Jones, personal comm.). The signal and noise both
have typical bandwidths between 5 Hz and 60 Hz and peak
at 30 Hz. As a consequence, no improvement in signal-to-
noise ratio by bandpass filtering the data was expected and
no filter was therefore applied. A few events and stations
were checked for the presence of coherent (signal-generated)
noise in the P-wave coda. Such noise was found in several
records. The P wave and S wave are separated sufficiently
in time (0.5 sec) such that the noise on the P wave is mainly
due to scatter and multipathing effects. The presence of both
polarized random and coherent noise makes this dataset ideal
to test our automated polarization analysis.

Implementation and Results. First, accurate relative P-
wave arrival times are calculated by repeated cross-correla-
tion with pilot traces (see Practical Implementation on P-
Wave Array Data section). The manual arrival times of Dyer
and Jones (1998) served as a starting point.

For the automatic P-wave polarization analysis the
length of the initial analysis window was set to 60 msec,

starting with the P-wave arrival time. This length was chosen
after visual inspection of the data and comprises approxi-
mately two signal periods. We judged that a minimal number
of 25 samples for the optimized analysis window is sufficient
to provide a representative polarization estimate. An �-value
of 90% is used in the window optimization to remove all
samples with misfit values c(t) that lie outside the expectancy
interval [�l�, �l�]. The weighting matrix W was calcu-
lated from 300 msec of prearrival data. All stations with
linearities, linj, of less than 95%, or with a polarization un-
certainty estimate, , greater than 6� were deemed unre-⎢e ⎥95j

liable and subsequently discarded.
A total of 1463 polarization estimates were obtained

using these parameters. Figure 6 displays the results for a
representative microseismic event. It contains the original
data for all six stations and the associated automatically de-
termined P-wave polarizations. On hodograms, or particle
motion plots, for stations 1, 2, and 5 there is clear evidence
that the P-wave particle motion becomes nonlinear after ap-
proximately half a period. Station 4 has seemingly the best
data quality, whereas station 6 suffers from increased back-
ground noise. The automatically interpreted polarizations are
in good agreement with the general P-wave particle motion
trends.

In Figure 7 we show the histograms of the polarization
uncertainty estimates for each station j. These polari-⎢e ⎥95j

zation uncertainty estimates have slightly asymmetric distri-
butions and range between 0.5� and 6�. The shape and spread
of these uncertainty distributions confirm that the threshold
of 6� for identifying bad estimates is appropriate for this
dataset. The median of the uncertainty estimates decreases
from 3� in station 1 to 2.1� in station 4. Values then rise to



Signal Extraction and Automated Polarization Analysis of Multicomponent Array Data 2425

Figure 5. (Left) Valhall location map with 3D inset reporting the locations of the
microearthquake sources recorded during a 1998 experiment and after Dyer et al.
(1999). (Right) General geometry overview of the 1998 experiment. The geophone
stations were deployed at 20-m intervals between depths of 2000 and 2100 m and are
numbered from 1 to 6 with increasing depth.

3.4� in stations 5 and 6. Station 1 is furthest away from the
cluster of microseismic events and has lower overall signal-
to-noise levels because of longer travel paths. This explains
the progressively decreasing uncertainty estimates found in
stations 1, 2, 3, and 4. This trend is not continued in results
from stations 5 and 6 because of increased noise from the
unclamped weight beneath station 6.

Comparison with Manually Determined Polarizations.
The accuracy and quality of our automatically obtained po-
larization estimates is finally assessed by comparing them
with the manual polarizations from Dyer and Jones (1998).
We analyze the scatter of our polarizations with respect to
the benchmark ones. The scatter estimate is independent of
the range of polarizations and is evaluated per station and
plotted in stereographic projection. First, we take the man-
ually obtained reference polarization for a given station and
event, and rotate it through azimuth and inclination to the
vertical, or pole (points A and B to a and b in Fig. 8). The
same rotation is applied to the relevant polarization from our
set of estimates (points A� and B� to a� and b� in Fig. 8). All
reference polarizations lie on the pole after rotation and our
polarizations scatter around it. An overall deviation of our
rotated polarizations from the pole indicates a systematic
difference between both sets of estimates. Scatter in the
north–south direction, such as between b and b�, relates to
inclination differences between the two sets of polarizations.

Scatter in the east–west direction, such as between a and a�,
relates to azimuth differences (Fig. 8).

We determine the centre of mass of our rotated polari-
zation estimates and its 95% expectancy limits max95 and
min95 (Fisher et al., 2004). If the differences between our
and the manually obtained reference estimates of Dyer and
Jones (1998) are perfectly random then the angle between
the center of mass and the pole is zero and max95 � min95.
Ideally, the values for max95 and min95 should also be similar
to the estimated confidence limits on our polarizations .e�j

The set of measurements from Dyer and Jones (1998)
contain 1325 determined P-wave polarizations, 1228 of
which are also measured by using our automated approach
and can thus be compared. A stereographic projection for
the scatter between both sets of polarization estimates in
each station is given in Figure 9. The number of compared
estimates per station and the angle between the pole and the
centre of mass of the rotated estimates with the 95% expec-
tancy intervals are given in Table 3.

Except for station 5, we find trivial deviation angles
between the pole and the scatter center of gravity. For station
5 we have an average deviation of 3� to the east. The scatter,
moreover, is elongated between 2� W and 10� E. This indi-
cates that our 223 compared polarization azimuths are
shifted azimuthally clockwise with respect to the benchmark
ones. The most plausible reason for this bias is increased
horizontal noise levels due to the unclamped weight below
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Figure 6. The left panels shows an example of a microseismic event recorded at
Valhall. The receivers are numbered 1 to 6 from top to bottom. The P-wave and S-
wave arrivals are picked on the 3C data from each station. The horizontal bold lines
that start at the P-wave arrivals mark the initial time windows used for polarization
analysis. The left panel shows the horizontal and vertical hodograms, or particle motion
plots, for each station. They represent the 60 msec of data as indicated by the bold
markers on the left panels. These hodograms are overlain with the automatically mea-
sured P-wave polarizations.
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Figure 7. Histograms per station for the polarization uncertainty estimates, . Thee95j

polarization uncertainties gradually decrease from stations 1 to 4. They are largest for
stations 5 and 6, probably because of the presence of an unclamped weight attached to
station 6.

station 6. The observed azimuthal shift in polarizations is
then expected, since our polarization analysis corrects for
noise polarization effects whereas the method for the bench-
mark polarizations does not. For the same reason we would
anticipate a more pronounced effect at station 6. This is not
observed because noise from the undamped weight rendered
most data from this station inadequate for analysis. The 63
compared polarization estimates at this station relate mainly
to quiet times. Therefore, we do not expect a systematic shift
in azimuths as is the case.

Ninety-five percent of the compared automatically ob-
tained polarization estimates differ by less than 4� from the
manual polarizations from Dyer and Jones (1998). This is
supported by the expectancy intervals max95 and min95 for
differences between both sets of polarizations (Table 3). At
most stations we find small and similar values for max95 and
min95 values. This indicates that the differences between
both sets of polarizations are mainly due to random picking
errors. Finally, we observe a good agreement between max95

and min95 values and estimated confidence intervals fore95j

the automatic polarizations. This gives us an increased con-
fidence in the automatically derived error estimates.

Discussion

Our noise-weighted 3C array method for polarization
analysis and signal extraction uses analytic signals as input
data to analyze signals with elliptical and linear polarizations
(Vidale, 1986). The input matrices could also consist of time
series, or their Fourier transforms or wavelet transforms
(Flinn, 1965; Samson, 1973; Lilly and Park, 1995). We pre-
fer the analytic signal because it is computationally more
cost effective than other transforms. In addition, it is stable
over short-analysis windows which allows the removal of
individual samples from the data window. Fourier trans-
forms, and especially wavelet transforms are nevertheless
better suited for broadband data where signal and noise sepa-
rate in the frequency domain. Noise weighting is included
to deal with the bias introduced by polarized noise. It is an
important feature for data with low signal-to-noise ratios and
strongly polarized noise (Souriau and Veinante, 1975; Ba-
taille and Chiu, 1991). Weighting relies on prior knowledge
of the noise-correlation matrix and the assumption of
stationary-noise properties. Typically, the weighting matrix
is estimated from 5 to 10 signal periods of prearrival data
(Samson, 1983a; Du et al., 2000). The method is robust for
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Figure 8. Method to compare our polarizations
with the reference polarizations in stereographic pro-
jection. A and B (in black) are two reference polari-
zations. A� and B� (in dark and light gray) are our
alternative estimates for A and B. We move A and B
to the pole, creating points a and b, first by rotating
them horizontally to an azimuth of 0� and then ver-
tically to an inclination of 90�. Next, the same rota-
tions are applied, respectively, to our polarization es-
timates A� and B�, thereby creating the points a� and
b� close to the pole. The scatter of points a� and b�
around the pole defines the difference between our
polarizations and the reference ones. Scatter in the
east–west direction (a and a�) relates to differences in
azimuth. Scatter in the north–south direction (b and
b�) relates to differences in inclination.

small errors in the weighting matrix. To verify if weighting
improves the estimates the signal-to-noise ratio SNRw (9)
must be greater than its unweighted counterpart SNR (4).

To improve accuracy in the presence of signal-corre-
lated noise we combine data from different 3C stations into
one analysis (Bear et al., 1999). The method only works
when all data relate to the same signal. The data must also
be accurately corrected for arrival-time differences. When
the noise is unrelated between k combined datasets, the sig-
nal and polarization estimates will benefit from a k-fold�
increase in signal-to-noise. The main advantage over stack-
ing like Jurkevics (1988), or Earle (1999), is that this multi-
station approach provides signal and polarization estimates
at each station and that the signal polarizations and ampli-
tudes may vary from station to station.

Our automated procedure for P-wave polarization anal-
ysis relies on several parameters. The first set of parameters
control the optimization of the analysis window. It includes
a prearrival data window for noise weighting and the initial
P-wave window. These are typically 5 to 10, and 2 signal
periods long. We find that reasonable changes in window

lengths have little influence on the final result. The �-value
that defines the misfit expectancy interval [�l�, �l�], and
the minimum number of samples in the optimized analysis
window are more influential. For � � 85% the window op-
timization nearly always converges to the predefined mini-
mum number of samples. We obtained best results with �-
values of approximately 90% and a minimal sample
population of approximately 0.5 to 1 signal period. The sec-
ond set of parameters are the threshold values for linearity
linj and uncertainty . They control the identification ofe�j

events and stations with poor data quality. This ultimately
leads to the removal of low-quality data from the analysis.
We feel that linearity linj should always exceed 95% and
that the error estimate should be less than 10�. When this is
not the case the polarization estimate should be regarded as
unreliable.

Conclusions

We introduce a complex, weighted, 3C-array method to
determine the waveform and polarization of the recorded
seismic signal at each 3C station. Our method is based on
SVD, or EVD, of the analytic signal and combines ap-
proaches from Vidale (1986), Samson (1983a), and Bear and
Pavlis (1999). It can handle linear and elliptically polarized
signals and minimises the influence of polarized noise on the
estimated signal properties.

We have combined this method with an optimization
procedure for selecting the data-analysis window and adapt
it for P-wave polarization analysis. It automatically detects
and removes stations with poor-quality data for each event.
It also provides a P-wave polarization with error and linear-
ity estimates. Tests on synthetic and real data show that the
combination of linearity and a confidence interval of errors
accurately indicate the quality of the P-wave polarization
estimate.

We implemented our fully automated method on the
1998 Valhall microseismic dataset and obtained 1463 P-
wave polarizations estimates from 303 events and 6 receiv-

Table 3
Measured Differences between the Reference and Our P-Wave
Polarization Estimates at Each Station, Based on a EVD of the

Rotated Polarization Vectors Shown in Figure 9

Station Number

1 2 3 4 5 6

max95 (deg) 4.6 4.6 5 3.7 5.6 3.2
min95 (deg) 3.5 3.6 3.8 3.1 2.2 2.7

Deviation from vertical of
overall difference (deg)

1 0.5 1 1 3 0.5

No. of estimates 194 222 254 255 223 63

Large angles between the pole and the first eigenvectors indicate sys-
tematic differences between our polarizations and the reference polariza-
tions. max95 and min95 give the minimum and maximum 95% expectancy
intervals for the difference between original and automatic polarizations.
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Figure 9. Stereographic projections of the scatter between our polarization estimates
and the reference polarization estimates from Dyer and Jones (1998). Each scatter plot
is generated as explained in Figure 8. Except for station 5, no systematic difference
occurs between the manual and reference polarizations as the scatter is typically less
than 5�.

ers. These estimates typically have 95% confidence limits of
3�. We statistically compared our results with those from a
previous study by Dyer et al. (1999). The reference P-wave
polarizations were obtained by applying a simple, single-
station EVD over a manually selected data window. The dif-
ference between both sets of polarizations is mainly due to
random picking errors. 95% of all polarization differences
lie within 4� and none exceed 15�. This confirms that our
automated method provides meaningful error estimates and
polarizations that are of comparable quality to manual mea-
surements. An additional advantage is naturally that the au-
tomated analysis takes only a few minutes for the entire data-
set, compared with a time-intensive manual interpretation.

A significant subset of events in receiver station 5 are
contaminated with horizontally polarized noise which causes
a shift of up to 10� in the azimuths from the reference po-
larizations in Dyer and Jones (1998). Our technique corrects
for this bias and therefore leads to more accurate polarization
estimates. In turn this improves the quality of the estimated
event locations.
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