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ABSTRACT

This study presents the first demonstration of the transferability
of a convolutional neural network (CNN) trained to detect micro-
seismic events in one fiber-optic distributed acoustic sensing
(DAS) data set to other data sets. DAS increasingly is being used
for microseismic monitoring in industrial settings, and the dense
spatial and temporal sampling provided by these systems produces
large data volumes (approximately 650 GB/day for a 2 km long
cable sampling at 2000 Hz with a spatial sampling of 1 m), re-
quiring new processing techniques for near-real-time microseis-
mic analysis. We have trained the CNN known as YOLOv3,

an object detection algorithm, to detect microseismic events using
synthetically generated waveforms with real noise superimposed.
The performance of the CNN network is compared to the number
of events detected using filtering and amplitude threshold (short-
term average/long-term average) detection techniques. In the data
set from which the real noise is taken, the network is able to detect
>80% of the events identified by manual inspection and 14%
more than detected by standard frequency-wavenumber filtering
techniques. The false detection rate is approximately 2% or one
event every 20 s. In other data sets, with monitoring geometries
and conditions previously unseen by the network,>50% of events
identified by manual inspection are detected by the CNN.

INTRODUCTION

Distributed acoustic sensing

In recent years, seismic monitoring has seen the development
of a novel sensing technology: distributed acoustic sensing (DAS).
This technology makes use of Rayleigh scattering of laser light in
fiber-optic cables to measure strain-rate on a fiber (see Hartog, 2017
for an introduction). A fiber interrogator emits a laser pulse down
the fiber and records the back-scattered light (Figure 1). The phase-
difference between the back-scattered light from two points in
the fiber is analyzed for each channel (equivalent to a receiver).
The distance between the two points is termed the gauge length.
Changes in strain along the fiber caused by, for example, the passing

of a seismic wave, result in changes in the recorded signal (Hartog,
2017; Ning and Sava, 2018). One significant advantage of DAS is
that fibers can be kilometers long and channels are closely spaced,
on the order of meters; therefore, thousands of measurements are
obtained, providing dense sampling of the wavefield. For example,
assuming a seismic velocity of 2500 m/s and a signal frequency of
100 Hz, a 2000 Hz sampling frequency and a 1 m channel spacing
produce 25 samples per wavelength and 80 samples per period.
Compared with traditional geophone or seismometer sensors, where
tens (or maybe hundreds in a dense experiment) of measurements
are made, fiber provides a more complete picture of a seismic wave-
field, thereby providing significantly more information on, for ex-
ample, geologic structure (e.g., Dou et al., 2017; Jousset et al.,
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2018), and, for microseismic applications, potentially providing
significant improvements in event detection capability and location
accuracy. Here, we examine the use of DAS in microseismic mon-
itoring, focusing on event detection.

DAS for microseismic monitoring

The detailed information to be gained from DAS data is particu-
larly useful for microseismic monitoring, where small seismic
events (usually with magnitudes <0) are recorded in industrial set-
tings. For example, the technology has been deployed to monitor
induced seismicity at hydraulic-fracturing sites. The results from
these surveys highlight the potential for enhanced monitoring by
integrating temperature, strain, and microseismic measurements all
made on fiber-optic cables (Karrenbach et al., 2019). DAS data pro-
vide only a 1C recording (the fiber is sensitive to changes in strain
along the fiber, but it is insensitive to changes broadside to the
cable), whereas standard geophones and seismometers can provide
3C recordings. Nevertheless, processing techniques are advancing
to determine microseismic event locations (Webster et al., 2016;
Verdon et al., 2020) and source mechanisms (Cole et al., 2018;
Baird et al., 2020) from DAS data. The technology also is being
explored for microseismic monitoring in other industrial settings,
for example, at geothermal sites (Mondanos and Coleman, 2019),
geologic CO2 storage sites, and for volcano monitoring.
With thousands of sensors and a high sampling rate (>1000 Hz),

large volumes of DAS data are recorded (e.g., approximately
650 GB/day for a 2 km-long cable sampling at 2000 Hz with a spa-
tial sampling of 1 m). In industrial settings in which injection of
fluids is taking place, data analysis often is required in near real
time so operational decisions can be made based on monitoring data
(Clarke et al., 2019). This is a significant challenge for DAS micro-
seismic data; therefore, new methods are required to analyze data
within an acceptable time period. Some comparisons of traditional
microseismic event detection methods, such as short-term average/
long-term average (STA/LTA) algorithms, have been published for
DAS data (e.g., Binder and Chakraborty, 2019). However, these
methods which rely on well-known signal-processing techniques
often are computationally slow with the large data volumes pro-
duced by DAS systems.
Machine-learning techniques have progressed significantly in re-

cent years, in speed and accuracy, and initial studies show potential
for rapid analysis of DAS data (Binder and Chakraborty, 2019). The
objective of the present study is to assess the accuracy of using a
current CNN in microseismic event detection. We detail the suc-
cessful retraining of a CNN known as YOLOv3 (Redmon and Far-
hadi, 2018), and we apply the network to event detection in multiple
data sets. We compare the microseismic event detection capabilities

of the retrained CNN to manual detection and the number of events
detected using a classic signal processing filtering and amplitude
threshold (STA/LTA) technique.

Machine learning

Here, we apply image recognition machine-learning techniques
to DAS data to identify microseismic events. Deep CNNs are now
the most popular method applied to object detection and classifica-
tion (Rawat and Wang, 2017). Such methods are able to process
video files in real time, and this potentially enables the real-time
processing of DAS data to highlight features of interest. Benefits
of using machine-learning techniques could be to reduce data stor-
age space requirements and a reduction in data processing time for
detailed analysis.
The use of machine learning in geophysics, and seismology in

particular, has seen a recent increase. Earthquake detection and/
or phase-picking methods mainly have concentrated on regional
and global earthquake catalogs with seismic events detected on con-
ventional networks (e.g., Ross et al., 2018; Zhu and Beroza, 2019;
Zhou et al., 2019; Woollam et al., 2019) or on data from industrial
settings recorded on geophones (Zhang et al., 2018). This study
builds on work to detect microseismic events using Haar Cascades
demonstrated by Horne et al. (2019) and, much like the study by
Binder and Chakraborty (2019), this work presents the successful
detection of microseismic events in DAS data using a CNN. The
present study differs in the fact that we retrain an existing fast object
detection algorithm suitable for use on video. Additionally, we
show that the trained network is generally applicable and can be
used to detect microseismic events in other data sets in which a
cable is installed in a horizontal well. This is an important step
in proving the feasibility of using DAS technology in microseismic
monitoring and the applicability of machine learning to event
detection in DAS data.
Two methods for event detection are tested in this study. The first

is to train a CNN to detect microseismic events, and the second is to
use filtering and amplitude threshold detection following stacking
of the STA/LTA characteristic function. Each method and the results
obtained using both methods are outlined below.

DATA

The data used in this study include synthetic data and also field
data (Data Set 1) collected during a single hydraulic-fracturing
stage. The field data are recorded using a DAS system (Silixa iDAS)
and comprise 4 h of continuous data. The data are collected from a
single monitoring well, parallel to the stimulation well in the hori-
zontal section, and they are recorded using a standard fiber with
3765 channels (receivers) with 1 m spacing. The well configuration
is illustrated in Figure 2. The data are recorded at 2000 Hz with a
10 m gauge length.
The synthetic microseismic event data for the study are created

using the monitoring setup in Figure 2. A homogeneous vertical
transverse isotropic (VTI) medium is assumed with velocities de-
rived from cross-dipole sonic logs from the horizontal monitoring
well and a nearby vertical well. The seismic velocities can be char-
acterized by the vertical P and S velocities VP0 ¼ 2800 m∕s and
VS0 ¼ 1750 m∕s and the Thomsen (1986) parameters ϵ ¼ 0.42,
γ ¼ 0.36, and δ ¼ 0.21.

Figure 1. Schematic showing the measurement principle of DAS. A
laser pulse is transmitted down the fiber. The phase difference in
back-scattered light is measured over a gauge length at points sep-
arated by the channel spacing.
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To produce the synthetic waveforms, a VTI ray tracer was used to
compute traveltimes from a moment tensor point source to each
channel for direct P, SV, and SH arrivals. Because a homogeneous
model is assumed, no other arrivals were modeled. Displacement
amplitudes and polarizations were computed using dynamic ray
theory Green’s functions derived by Chapman (2004). These
Green’s functions then are convolved with the time-derivative of a
third-order Brune pulse source wavelet (Beresnev and Atkinson,
1997) to generate velocity synthetics. We then convert the particle
velocity along the cable direction to the DAS strain rate by differ-
encing over the gauge length and dividing by the gauge length
(Miller et al., 2016). For further details on the synthetic data mod-
eling, see Baird et al. (2020).
The source parameters for 2000 synthetic events are chosen from

a random distribution of locations within a 500 m radius of the
center of the microseismic cluster determined from a surface array,
with moment magnitudes between −1.5 and 0.1, drawn from a
Gutenberg-Richter distribution, with the source frequency depen-
dent on the magnitude. Source mechanisms were assumed to be
planar shear faulting with a randomized orientation and slip direc-
tion. The corresponding moment tensors were calculated using the
equations of Vavryčuk (2005) and are largely double couple, but
with some non-double couple components due to the anisotropy.

EVENT DETECTION WITH MACHINE LEARNING

Method: YOLOv3

The aim of this study is to investigate the accuracy of using a CNN
to detect microseismic events in DAS data and evaluate whether a
trained network could be generally applicable to event detection
in microseismic monitoring data. The most efficient way to do this
is to take a network trained to detect other objects and retrain it to
recognize microseismic events. We use a CNN known as YOLOv3 to
test the possible application because it is one of the faster object de-
tection algorithms available and it has been reported as an accurate
real-time object detector for video files (Redmon and Farhadi, 2018).
Region-based object detectors (e.g., R-CNN; Ren et al., 2015) have
been reported as having a small accuracy advantage over YOLOv3,
but YOLOv3 is able to process a greater number of frames per second
(Hui, 2018). For DAS data, microseismic event detection in (near)
real-time processing is the biggest challenge, due to the large data
volumes. Therefore, YOLOv3 is chosen over region-based methods.
YOLOv3 is chosen over YOLOv2 because it is better able to detect
smaller objects and microseismic events may be recorded on only a
small portion of the fiber. Another advantage of YOLOv3 is that it is
able to detect overlapping objects in an image, as often occurs in
microseismic event detection.
YOLOv3 uses a single CNN. The network has been trained on

the ImageNet data set to classify and locate objects in an image or
video (Redmon and Farhadi, 2018). ImageNet is an online image
database with hundreds of thousands of images classified by noun
(the object in the image), and it often is used to test object detection
algorithms (Stanford Vision Lab, 2016). For detection, a network
architecture with 106 layers (75 convolutional and 31 other layers)
is used (Figure A-1). Batches of images are input to the network
with the number of input images being defined by the batch param-
eter. One batch of images is processed by the network in each
iteration before the weights for the network filters are updated.
Batch normalization is applied, and batches can be divided into

minibatches, so GPU processes work on this number of images
at once. The size of the network (width and height) is set, and input
images automatically are resized to these dimensions. It is desirable
that the size of the input images (and network) is large enough to
retain details. For microseismic events, this detail includes identi-
fication of first-arrival times and observations of P- and S-waves
and coda.
An input image is divided into a grid, and a given number of

bounding boxes are predicted for each grid cell (Figure 3). A con-
fidence score is attributed to each bounding box that reflects how
likely it is that the box contains the object and how accurately the
box describes the object. Using sigmoid activation, YOLOv3 pre-
dicts the probability of each class of object in each grid square.
Here, we are trying to predict only one object class (a microseismic
event) so each grid cell has one probability associated with it. After
each iteration through the network, the loss value is given, thereby
providing a measure of how well the model is predicting the exist-
ence of an object in an image. The smaller the loss, the better the
model predictions are. The loss function is the function used to
evaluate a candidate solution. The YOLOv3 loss function is a com-
bination of the errors in the bounding box position (a squared error
loss) and errors in the prediction of an object class (a binary cross-
entropy loss) (Redmon and Farhadi, 2018; AlexeyAB, 2018). The
confidence scores reflect the degree of overlap between the pre-
dicted and ground truth object bounding box. As outputs, the model
simultaneously predicts bounding boxes for classes of object and
the confidence that an object is in the boxes.

Data preparation

To train YOLOv3 on DAS data, a training data set of example
images of microseismic events and background noise is prepared.
The synthetic data are prepared as described above in the “Data”
section and in Baird et al. (2020), and 2000 microseismic event
examples with a single event in each file are created. Two thousand
examples were used to gain a good distribution of event magni-
tudes, locations, and source mechanisms while restricting the num-

Figure 2. Schematic of the stimulation and monitoring well con-
figuration for Data Set 1 and the synthetic data. A single fiber-optic
cable is deployed in the monitoring well. Data Set 1 is recorded over
one hydraulic fracturing stage. The location of the perforation shot
for this stage is indicated by the blue dot.

DAS microseismic event detection KS151
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ber to minimize training times. Only data from the horizontal sec-
tion of the cable are used because very little microseismic energy
actually was recorded on the vertical section in the field data due to
the distance of the hydraulic fracturing from the build section of the
well (>1 km). To reduce the size of the input images for the machine
learning, data from every fourth channel is used. Downsampling
rather than decimation using low-pass filtering was used for sim-
plicity following initial tests that showed it did not affect the detec-
tion capabilities. The downsampling maintains sufficient detail in
the waveforms while allowing data from the horizontal section of
the cable to be included. Gray-scale images (512 × 512 pixels in
size) are created (i.e., including data from a 2 km fiber section over
512 time samples, 0.256 s). 512 × 512 was chosen because it is the
minimum size that allows input images to be used without incurring
any time decimation. Initial tests also showed convergence of the
training with this size of image. The longer processing times asso-
ciated with larger images work against the aim to provide (near)
real-time data processing.
To make the synthetic examples more realistic, examples of noise

from the first minutes of the field data, in a random channel order,
are added to the data with signal-to-noise ratios (S/Ns) between 3
and 7. Gaussian noise then is added at a random level between
0% and 25%. Thus, 2000 synthetic microseismic event images are
created. The images are gray scale and hence have amplitudes
normalized between 0 and 255. Ground truth bounding boxes
for the events are automatically calculated because the location
of the event, and hence the closest channel, is known. The box
is chosen to include the first P- and S-wave arrivals on the closest
channels. Some variation in size is introduced to replicate human
variations in choosing a box and also because the extent of a micro-
seismic event is somewhat subjective (how many channels should
be included?). These automatically determined bounding boxes are
the “ground truth” boxes, and predictions made by YOLOv3 are
compared with these.

Two thousand example images of noise also are created in a similar
way. In addition, lines of random length and orientation are added to
half of the negative images. This is done with the aim of teaching the
network that lines on images do not necessarily represent microseis-
mic events. Such lines might represent, for example: noise spikes,
faulty channels, or tube waves traveling along the array.
The data (events and noise) were not augmented in some ways

that often are used in machine learning because, for example, ro-
tation of an image of a microseismic event will not represent actual
data recordings. However, the saturation and brightness of the im-
age were changed at random, and the size and aspect ratio of the
images were allowed to vary between 0.4 and 1.6 times the original.
The network size also was allowed to vary.
The 4000 synthetic images are randomly split into training and

validation data sets, with 3600 images chosen for training and the
remaining 400 images (10% of the images) used for validation. No
preprocessing was performed on the training data, and raw images
were used in training.

Network training

YOLOv3 has been pretrained on ImageNet images. The network
therefore was not trained from scratch but was retrained on 3600 syn-
thetic example images of microseismic events and noise recordings,

Table 1. YOLOv3 input parameters used in training the
network to detect microseismic events.

Run Learning rate Burn-in Steps Batch size

1 0.01 500 1600, 1800 64

2 0.01 1000 1600, 1800 64

3 0.001 500 1600, 1800 64

4 0.001 1000 1600, 1800 64

5 0.0001 1000 1600, 1800 64

6 0.001 1000 1600, 1800 16

7 0.0001 500 1600, 1800 64

8 0.001 500 1000, 1500 64

9 0.001 1000 1200, 1600 64

Figure 4. Model loss during training of YOLOv3 on 3600 synthetic
data images. The parameters used in each training run are given in
Table 1.

Figure 3. An example of bounding box testing by YOLOv3. The
image shows a synthetic microseismic event recording with noise
added. The image is divided into the grid shown and many bound-
ing boxes. In this example, two boxes are tested for the existence of
a microseismic event for each grid cell — here, for the grid cell
indicated by the blue dot.

KS152 Stork et al.
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using the weights from the pretrained model to initialize the training.
This reduces the training time required. The aim is to find the param-
eters that give the best event detection results while minimizing the
number of missed events and false detections. The learning rate de-
termines how quickly the model can adapt in training. In YOLOv3,
the learning can be modified by several parameters and a learning
rate scheduler is used, determined by the burn-in rate. For the ini-
tial burn-in (BI) iterations, the learning rate for that iteration (I) is
given by

LRðIÞ ¼ LR × ðI∕BIÞ4 (1)

where LR is the learning rate defined by the user that is used after BI
iterations. Later in the training, the weights should not vary signifi-
cantly between iterations so a smaller learning rate can be used,
and LR is multiplied by 0.1 at the given step iterations. LR values
between 0.01 and 0.0001 are tested, and 0.001 ≤ LR ≤ 0.01 produce
lower losses. A selection of learning rate scheduler parameters and
batch sizes tested are given in Table 1.
Initially, the network size is set to the pixel size of the training

images (512 × 512) to preserve details in the waveforms. Time deci-
mation affects the accuracy of first-arrival identification, and through
initial testing it was determined that lower losses were achieved if the
network size allowed input without any downsampling in time. The
width and height of the network are set to the
same size and allowed to vary in the training every
10 iterations. Batch sizes, or number of images
passed through the network in one iteration, be-
tween 16 and 128 were tested. If the number is
too large, the training becomes slow. However,
if a very small number is used, the network may
not experience a good sample of the range of ob-
ject attributes and the results could vary wildly be-
tween each iteration. The maximum batch size
allowing the network training to run in a few hours
was 64, and this is the value used for most of the
results presented here (Table 1).
Network losses from the selection of training

tests in Table 1 are shown in Figure 4. These re-
sults include the training runs with the smallest
losses, and the weights from the three training
attempts with the lowest loss are tested on the val-
idation set (Runs 1, 2, and 3 in Table 1 and Fig-
ure 4). It is observed that, after 2000 iterations, the
loss stabilizes; therefore, the weights from the
2000th iteration are used in the validation to avoid
overtraining the network.

Validation

Batch image detection (Gong, 2019) is con-
ducted using the weights from the trained net-
works from Runs 1, 2, and 3 (Table 1). The
validation images to which this is applied com-
prise 194 images containing microseismic events
(one event per image) and 206 noise images. The
outputs from this detection are bounding boxes
containing microseismic events with a given con-
fidence. A minimum confidence of 25% is used
to declare the detection of an event. Detections

are classified as either true positives (the network is detecting a mi-
croseismic event) or false positives (an event is declared in which
there is no seismic event). Images in which no event is detected with
>25% confidence may be true negatives (it is an image containing
noise only) or false negatives (the image contains an undetected
seismic event).
The classification results using the weights from Runs 1, 2, and 3

are shown in Table 2. All models correctly identify >95% of the
events in the data set, and >99% of the noise images are classified
as such. It also is important not to falsely report events, and in each

Figure 5. Example event detections from the YOLOv3 model validation. One example
of (a) a true-positive event detection, (b) a false-positive event detection (the right-side
box), and (c) an image falsely classified as noise are given.

Table 2. Microseismic event classification results for YOLOv3
model validation using weights from Runs 1, 2, and 3.

Run 1 Run 2 Run 3

True positives 191 190 187

True negatives 204 206 206

False positives 4 1 2

False negatives 3 4 7

DAS microseismic event detection KS153
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of the three cases, ≤ 2% of detections are false positives. Figure 5
shows examples of true-positive, false-positive, and false-negative
event detection. In total, eight events were missed in one or more of
the validation tests. The dominant causes of missed detections are
the event mechanism and location effects on the features observed in
the waveforms. Four out of eight of the events had one-sided radi-
ation patterns; that is, arrivals were obvious on only one side of the
apex (e.g., Figure 5c), and for six out of eight events, only S-waves,
not P-waves, are visible (e.g., Figure 5c). Two of the missed events
have first arrivals in the latter 15% of the image so the full event is not

visible, and two have high-amplitude noise on three or more channels
covering the event signal. Training with more images with these char-
acteristics could improve detection accuracy. The threshold for event
detection is set low (at 25%). However, in all three cases, >70%
of events are detected with a confidence >80% with Runs 1 and
2 providing the highest confidence detections (Figure 6).

Testing with field data

We test the capabilities of the trained CNN to detect events in field
data because, obviously, to be useful, the method must be applicable
to real data. Eight hundred images are created from the Data Set 1
DAS data. These images were manually inspected without any filter-
ing applied, and 527 events were observed.
In validation, the weights from Run 2 (with the parameters in

Table 1) produce slightly better results, with more detected events
and fewer missed events than the other validation tests. Therefore,
we use the trained YOLOv3 network with these weights to test de-
tection in Data Set 1, and >450 events are detected in the 800 test
images (Data Set 1 in Table 3).
The machine-learning approach is able to detect approximately

80% of the number found by manual inspection. Encouragingly, the
network sometimes is able to distinguish some overlapping events
(e.g., Figure 7a) even though the synthetic training images con-
tained only one event per image. This multievent detection is vital
in an industrial environment in which microseismic events often

Table 3. YOLOv3 microseismic event detection on field data
using the weights from Run 2.

Data set 1 2 3 1 1

Preprocessing None f-k filter Downsampled

True events 457 126 13 517 242

False detections 10 2 2 27 13

Missed events 70 47 11 50 267

The results of event detection on raw data from three different data sets are shown.
Data Set 1 consists of 800 images. Data Set 2 is 1 min of data, and Data Set 3 is 6 s of
data. In addition, detection results are shown for filtered Data Set 1 data and Data Set 1
data downsampled by a factor of 2 in space and time.

Figure 7. YOLOv3 microseismic event detection
in field data: (a) Two overlapping events (indicated
by the pink boxes) are distinguished by the net-
work in Data Set 1 and (b) an example event de-
tection in Data Set 2.

Figure 6. Histograms of microseismic event detection certainty in
Data Set 1 for (a) Run 1, (b) Run 2, and (c) Run 3. The YOLOv3
input parameters are given in Table 1.
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occur in quick succession or simultaneously at different locations.
Only 10 false detections are declared — 2% of the events or one
false detection every 20 s. This indicates that the network has been
well-trained to distinguish noise from events.
Most of the events missed in the detection with the CNN have

visible P and S arrivals on both sides on the apex without obvious
channel noise or first arrivals at the edge of the image. Therefore,
the characteristics of the missed events are different from the events
missed in the validation set of images. The dominant characteristic
is the S/N compared with the detected events. The maximum values
of individual channel STA/LTA characteristic functions of the de-
tected and undetected events are shown in Figure 8. Some 90% of
the missed events have maximum values <7.5, whereas for the de-
tected events the proportion is 50%. Lower characteristic function
values make it less likely that an event is detected, although the S/N
is likely not the only feature important in detection. The magnitude,
mechanisms, and locations of the events are not reliably known and
therefore cannot be investigated thoroughly.
It is essential that it is possible to generalize the application of

machine-learning approaches, so we also test the network’s detec-
tion capabilities on other data sets, namely, Data Sets 2 and 3. These
are data sets with velocity models and well configurations previ-
ously unseen by the model. Additionally, Data Set 2 is recorded
on the Silixa Carina system rather than the iDAS v2 system used

to record Data Sets 1 and 3. Data Set 2 is 1 min of data recorded on
an “L-shaped” (vertical and horizontal) well, and Data Set 3 con-
sists of only 6.0 s of data recorded in a horizontal well. In Data
Set 2, 126 events are detected with the machine-learning algorithm,
>70% of events identified by manual inspection, and an example is
shown in Figure 7b. In Data Set 3, >50% of manually identified
events are detected (Table 3). The fact that the trained CNN is able
to detect events in data from a previously unseen setting is vital for
the general application of a machine-learning approach to micro-
seismic event detection. The results confirm the ability of the
trained CNN to detect events in DAS data recorded on different
cable configurations and by different recording systems in varying
geologic settings.

EVENT DETECTION WITH 2D FILTERING
AND DATA STACKING

In addition to a machine-learning approach, we also test classic
signal processing and detection methods for event detection in DAS
data. This is done for comparison with the machine-learning
approach. For this processing stream, we concentrate our efforts
to improve the S/N of recordings using techniques applied in image
processing by considering the data as a 2D array. This is because the
large number of recording channels and the high sampling rate used
to acquire DAS data produce large data volumes. If each trace is
treated individually, as is commonly the case for geophone arrays,
processing the data from DAS arrays results in significantly longer
times.
It is possible to treat DAS data as a 2D array (or image) because the

wavefield is well-sampled in space and time. This presents a range of
filtering options to enhance object features, depending on the types of
features of interest. In a data processing context, they are available in
packages such as scikit-image (van der Walt et al., 2014).
A 2D median filter is initially identified as a suitable method

to improve S/Ns in the DAS data. The 2D median filtering method
is a noise-reduction technique and a nonlinear low-pass filter

Figure 10. The relative time required to process 100 microseismic
event files with (a) the median amplitude removed (labeled “None”)
and using (b) a 2D median filter with a local window size of 5, (c) a
Wiener filter with a filter window size of 11, (d) a 2D median filter
(window size = 3) and a bilateral filter with a window size of 5, and
(f) a 2D median filter (window size = 3) and an f-k filter with
0.1 Hz < f < 300 Hz, 0.0025m−1 < k <0.1m−1 and a maximum
slowness of 0.0007 s/m. The results are shown as a function of
the mean S/N calculated for the 100 events.

Figure 9. The summed f-k spectrum of 100 test events. The white
dashed lines outline the f-k filter chosen to conduct microseismic
event detection.

Figure 8. Histograms of STA/LTA characteristic function maximum
values for detected and undetected (missed) events in the Data Set 1
test images. Lower maximum values indicate lower S/N recordings.
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(e.g., Huang et al., 1979). A pixel value is replaced by the median
value of a square of pixels surrounding it. It is useful when an image
contains low to medium levels of Gaussian noise, as is often as-
sumed in seismic data processing. A median filter better preserves
the edges of features than a Gaussian filter. The onset (edge) of a
seismic wave is an important parameter in event detection; there-
fore, a 2D median filter is applied to the data rather than a Gaussian
filter. More sophisticated adaptive median filters are available (e.g.,
Hwang and Haddad, 1995) but these inevitably further increase the
processing time.
Several other candidate filtering methods were tested, including

Wiener and bilateral filtering. Bilateral and Wiener filters are rou-
tinely applied in image processing. AWiener filter is a type of de-
blurring filter, and a bilateral filter is an edge-preserving filter that,
rather than calculating the median value of the surrounding pixels,
computes a weighted average of surrounding pixel intensities. The
weights are based on distance and intensity similarity. For details on
bilateral filtering, see Paris et al. (2008).
Frequency-wavenumber (f-k) filtering often is performed in seis-

mic processing to improve S/N, so this method is tested on the DAS
data. To perform the f-k filtering, the time/space domain signal is
transformed to the frequency/wavenumber domain using a 2D fast
Fourier transform. Noise with different frequencies and wavenum-
bers than the signal of interest can be masked before transforming
the signal back to the time/space domain. The f-k filter applied in
this study is developed specifically for application to this DAS data
set based on the recording parameters and the frequency content of
100 example events. To determine the frequency content of the

signal and the range of apparent velocities of the waves detected,
the f-k spectra of the example events are summed (Figure 9). A
tapered mask with a Gaussian filter is applied to the data before
an inverse Fourier transform is applied. Masks with higher maxi-
mum frequencies, >300 Hz, were tested, but fewer events were de-
tected. Generally, if example data are unavailable, a filter can be
developed with the expected maximum frequency and apparent
seismic velocities estimated from the expected event locations rel-
ative to the monitoring array and the velocity model.
The different filtering methods are compared by calculating the

average S/N improvements for 100 microseismic events from Data
Set 1. The S/N is defined as the average root mean square (rms) am-
plitude of the 100 samples on all channels after the detection time
divided by the rms amplitude of 100 time samples before the detec-
tion. Due to the distance of the events from the cable, the window
includes P- and S-wave arrivals on the closest channels. Bilateral,
Wiener, and f-k filters are found to result in good increases in the
overall S/N (Figure 10). To enable detection in near real time, the
bilateral filter is discounted. The filter window lengths required to
achieve good S/Ns with the Wiener filter also result in blurring of
the data; this reduces the onset sharpness and S/N of the first arrival
(Figure 11). To encourage event detection on P- rather than S-waves,
the f-k filter combined with a 2D median filter is chosen as the pre-
ferred filter for event detection. This filter also better preserves char-
acteristics of refracted and reflected waves and the location of polarity
flips that may be useful in imaging or focal mechanism studies.
To test event detection with classic methods, the filtering is per-

formed in two stages: First, a 2D median filter is applied, followed
by 2D Fourier filtering. The only preprocessing of the data is re-
moval of the mean amplitude to give zero-mean data.
We make use of the large data volumes by summing (or stacking)

the filtered data recorded over a range of channels. Data stacking is
a technique that often is used in microseismic event detection, par-
ticularly for use with surface arrays (e.g., Chambers et al., 2010).
Here, initially a characteristic function is calculated for each chan-
nel using a recursive STA/LTA algorithm (Allen, 1978). Then, the
average amplitude sum of the characteristic functions is computed
over each of the N channels for each time sample:

AðtÞ ¼ 1

N

XN

i¼0

jaiðtÞj: (2)

Linear stacking is chosen because it is the simplest method to sum
data to improve S/N. Other methods (nth root, semblance weighted,
and instantaneous phase-weighted stacking) are tested for compari-
son (e.g., Figure 12). The phase-weighted stack does not produce
distinguishable peaks where the events occur. Following stacking,
an event is declared if this sum exceeds a given threshold. Here,
we use 15% above the median background value (Figure 13).
The number of events detected in Data Set 1 (4 h of field data)

using all of the stacking methods is given in Table 4, and the largest
number of events is detected with the linear stack. This method also
has the best success rate (72% of the detections are true events). The
success and simplicity (and therefore the speed) of the linear stacking
make this the favored method for event detection. Using a 2D median
and f-k filter followed by linear stacking of STA/LTA characteristic
functions, >1900 events are detected in total in Data Set 1.
Comparing the detection capabilities of the trained CNN and the

chosen f-k filtering method on the 800 test images from Data Set 1,

Figure 11. Example microseismic event recording (a) with no filter-
ing, (b) 2D median filtered with a local window size of 5; (c) Wiener
filtered with a filter window size of 11, (d) 2D median filtered (win-
dow size = 3) and a bilateral filter applied with a window size of 5,
and (e) 2D median filtered (window size = 3) and an f-k filter ap-
plied.
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400 events are detected using the f-k filtering and stacking method
compared with the 457 events detected using the trained CNN and
the 527 detected in the unfiltered images by manual inspection
(Table 3). Approximately 14% more events are found using the
CNN than using the filtering and stacking method.

DISCUSSION

A current disadvantage of the use of DAS for seismic monitoring
is that large volumes of data are produced. Accurate and near-real-
time processing methods are required. This paper presents a proof
of concept that a CNN can be trained to accurately detect seismic
events in DAS data and that this network can be applied to detect
events recorded on any cable deployed in a horizontal well. Further
development is required to optimize the process for near-real-time
data processing. Here, we present the benefits and limitations of the
current model and outline the developments re-
quired to make this method applicable to any
DAS microseismic monitoring situation.
In the present study, the YOLOv3 network is

retrained using synthetic data. Synthetic data
were chosen rather than real data for the training
because they provide a data set in which the an-
swer is known and the performance of the
network can therefore be reliably validated. Ini-
tially, Gaussian noise was added to the synthetic
waveforms, but in testing the network was un-
able to detect a significant number of events in
real data. Further tests can be conducted on using
different types of noise and real noise recorded in
a variety of settings to improve detection perfor-
mance. The results also highlight that the YO-
LOv3 model can be trained on a small number
of examples (4000) compared with the tens of
thousands or hundreds of thousands used in other
published seismic event detection CNN training
examples (e.g., Binder and Chakraborty, 2019;
Zhu and Beroza, 2019). This reduces the re-
quired training time.
An advantage of CNN machine-learning tech-

niques is that the network can be retrained as
more data become available. As microseismic
events are detected, these can be added to the
training data set to improve the reliability of fu-
ture detection. However, this can also be mim-
icked by adding further synthetic examples
using different well configurations and geologic
settings and structures. For example, synthetic
data sets for vertical and “L-shaped” wells with
different velocity models could be added to train
the network to be better able to recognize events
recorded on any cable configuration. It was
found that the trained CNN is more likely to miss
events recorded with low S/N; therefore, further
examples with S/Ns of < 3 should be added to
the training data. Synthetic training data sets
can provide waveforms for events of any magni-
tude, mechanism, or location, and any number of
noise examples or any S/N recordings can be cre-
ated. Therefore, future detection should not be

restricted to the types of events previously observed in a particular
setting, as demonstrated by the initial success of event detection in
Data Sets 2 and 3 in this study.
Images of the raw data are produced here for event recognition

testing. The elimination of the need to conduct any preprocessing,
due to the network having learned the best-performing filters,
speeds up event recognition. To verify the effectiveness of the filters
used by YOLOv3, the network also is tested on images produced
from data filtered using the f-k filter described in the Event Detec-
tion with Machine Learning section. This increases the number of
events detected by approximately 10% to 517 events (Table 3), in-
dicating that the internal filters of the trained network are not yet
optimized. If the network were trained on images with lower S/Ns
(here, a minimum S/N of 3 was used to ensure that events could be
manually identified), it should detect lower S/N signals; therefore,

Figure 12. An example of the data stacking results for (a) a sample of data containing
several microseismic events for (b) linear, (c) fourth root, (d) instantaneous phase-
weighted, and (e) semblance-weighted stacks of the STA/LTA characteristic functions.
The dashed lines indicate the detection threshold that are used (15% above the median
value).
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the improvement observed with the f-k filtering could be elim-
inated.
Despite the endless possible architectures for CNN models, the

YOLOv3 architecture stands out as solving the problem of real-time
object detection in video data with competitive accuracy (∼70%);
therefore, it was chosen for this study of continuous DAS data. De-
tection accuracy of >80% is achieved in Data Set 1, indicating that
the network is performing well. Significant factors in the speed of
CNN training and object detection are not only the computer and
the type of processor (CPU or GPU) used, but also the number and
size of the input images/video. Several tutorials are available online
on how to implement YOLOv3 effectively, and the GitHub reposi-
tories (Redmon, 2013) and (AlexeyAB, 2017) provide useful infor-
mation. Using the trained network, we investigate whether the size
of test images can be reduced while maintaining event detection
capabilities. Any downsampling in time results in poorer detection
performance, whereas spatial sampling can be reduced by a factor
of 2 without affecting the performance. Downsampling in time and

space so every other channel and time sample are used reduces the
number of events detected by nearly half in Data Set 1 (Table 3). If
the network were trained on time downsampled data, it is possible
that this result could be improved.

CONCLUSION

There has been a recent rise in the deployment of DAS fiber-optic
monitoring for microseismic applications. This type of monitoring
produces large data volumes; therefore, new processing techniques
are required to enable data processing in near real time. This study
presents the first successful application of a trained CNN to seismic
event detection in multiple DAS data sets. We train YOLOv3 for
object detection using a synthetic microseismic data set with real
noise added, and we subsequently apply it to three field data sets.
This is compared to more traditional event detection techniques.
The data are processed with f-k filtering combined with a 2D
median filter. Subsequently, a simple threshold detection algorithm
is applied to a linear amplitude sum of the recursive STA/LTA char-
acteristic functions of all channels.
In field data with the same well setup and geologic setting used to

create the synthetics, the CNN is able to detect >80% of events of
the 527 events found by manual inspection of unfiltered images.
Some 400 of the events are detected with the filtering and threshold
detection method. Importantly, the false detection rate of the CNN is
low, 2% of detections. Lower S/N events are more likely to be
missed in the detection. This effect could be reduced by training
with lower S/N examples. In other data sets, in which the geologic
setting, operational parameters, and the treatment-to-monitoring
well distances are different and unknown, the CNN correctly iden-
tifies >50% of events. The application of CNNs to seismic event
detection in DAS data is attractive due to the automatic nature, lack
of preprocessing required, and potential speed of the technique. De-
tection accuracy could be improved in the future with the addition of
further noise and event examples to the training process. The wider
the variety of recording settings and S/Ns that are used for training,
the more accurate the detection should become.
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APPENDIX A

YOLOV3 NETWORK ARCHITECTURE

Table 4. Number of microseismic events detected in Data Set
1 using different data stacking methods.

Method Total number of events % true detections

Linear 1960 72

Fourth root 1635 69

Semblance-weighted 852 46

The characteristic function of the STA/LTA of each channel is the input data to the
stack. The percentage of detections being true seismic events is shown.

Figure 13. (a) An example microseismic event recorded on the
DAS cable in the monitoring well. First-arrival P-waves and sub-
sequent S-waves are observed. (b) The absolute amplitude sum
for each channel over time. The dashed line indicates the threshold
value for declaring the onset of an event.
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